

Welcome to exec-helper’s documentation!

Contents:

	Welcome

	Installation instructions

	Command-line usage

	Configuration

	Plugins

	Feature documentation
	Command line arguments

	Configuration

	Custom modules

	Execution order

	Working directory

	API documentation [https://bverhagen.gitlab.io/exec-helper/docs/html/index.html]

Indices and tables

	Index

	Module Index

	Search Page

Exec-helper

Or How To Get Your Coffee In Peace.

[image: Documentation Status] [https://exec-helper.readthedocs.io] [image: Commits] [https://gitlab.com/bverhagen/exec-helper/commits/master] [image: Windows build] [image: Test coverage report] [https://www.codacy.com/gl/exec-helper/source/dashboard?utm_source=gitlab.com&utm_medium=referral&utm_content=exec-helper/source&utm_campaign=Badge_Coverage] [image: Code quality report] [https://www.codacy.com/gl/exec-helper/source/dashboard?utm_source=gitlab.com&utm_medium=referral&utm_content=exec-helper/source&utm_campaign=Badge_Grade]

What

Exec-helper is a meta-wrapper for executing tasks on the command line.

Why

Exec-helper improves the main bottleneck in your development workflow: you.

It does this by:

	Reducing the number of keystrokes required to execute the same command over and over again

	Chaining multiple commands

All without sacrificing (much) flexibility or repeating useless work.

If this, together with getting coffee in peace is not a sufficient rationale for you, the main advantages of exec-helper over (simple) scripts or plain command line commands are:

	Easy permutation of multiple execution parameters (so-called patterns in exec-helper).

	Easy selection of a subset of execution parameters.

	Improved DRY: execution parameters are only changed on one spot, in stead of everywhere in your command line.

	Technology-agnostic approach: e.g. running the exec-helper build can build a C++ project in one directory structure and a JAVA project in another.

	Enables a self-documented workflow.

	Out of the box support for multi-valued options and default values.

	Searches for a suitable configuration in its parent folders.

	Fast to type using the eh alias

	Easy to find and/or list available commands using the –help option.

	Easy extensible with your own, first-class citizen, plugins.

	Automatic autocompletion of commands and patterns

Simple example

This is a simple illustration of the concept behind exec-helper. More extensive information and examples can be found in the .exec-helper configuration file for this repository and in the documentation [http://exec-helper.readthedocs.io].

Use case

Build a C++ project using g++ and clang++ using cmake in a Debug and RelWithDebInfo configuration

Configuration file

Copy the following to a file named ‘.exec-helper’:

commands:
 init: Initialize build
 build: Build-only + install
 build-only: Build
 install: Install

patterns:
 COMPILER:
 default-values:
 - g++
 - clang++
 short-option: c
 long-option: compiler

 MODE:
 default-values:
 - debug
 - release
 short-option: m
 long-option: mode

build:
 - build-only
 - install

init:
 - command-line-command

build-only:
 - make

install:
 - make

command-line-command:
 init:
 patterns:
 - COMPILER
 - MODE
 command-line: [cmake, -H., "-Bbuild/{COMPILER}/{MODE}", "-DCMAKE_CXX_COMPILER={COMPILER}", "-DCMAKE_INSTALL_PREFIX=install/{COMPILER}/{MODE}", "-DCMAKE_BUILD_TYPE={MODE}"]

make:
 patterns:
 - COMPILER
 - MODE
 build-dir: "build/{COMPILER}/{MODE}"
 install:
 command-line: install

Example output

$ exec-helper --help
 -h [--help] Produce help message
 --version Print the version of this binary
 -v [--verbose] Set verbosity
 -j [--jobs] arg Set number of jobs to use. Default: auto
 -n [--dry-run] Dry run exec-helper
 -s [--settings-file] arg Set the settings file
 -d [--debug] arg Set the log level
 -z [--command] arg Commands to execute
 -c [--compiler] arg Values for pattern 'compiler'
 -m [--mode] arg Values for pattern 'mode'

 Configured commands:
 init Initialize build
 build Build-only + install
 build-only Build
 install Install

$ exec-helper init build # Permutate all combinations of the default values
Executing "cmake -H. -Bbuild/g++/debug -DCMAKE_CXX_COMPILER=g++ -DCMAKE_INSTALL_PREFIX=install/g++/debug -DCMAKE_BUILD_TYPE=debug"
Executing "cmake -H. -Bbuild/g++/release -DCMAKE_CXX_COMPILER=g++ -DCMAKE_INSTALL_PREFIX=install/g++/release -DCMAKE_BUILD_TYPE=release"
Executing "cmake -H. -Bbuild/clang++/debug -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_INSTALL_PREFIX=install/clang++/debug -DCMAKE_BUILD_TYPE=debug"
Executing "cmake -H. -Bbuild/clang++/release -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_INSTALL_PREFIX=install/clang++/release -DCMAKE_BUILD_TYPE=release"
Executing "make --directory build/g++/debug --jobs 8"
Executing "make --directory build/g++/release --jobs 8"
Executing "make --directory build/clang++/debug --jobs 8"
Executing "make --directory build/clang++/release --jobs 8"
Executing "make --directory build/g++/debug --jobs 8 install"
Executing "make --directory build/g++/release --jobs 8 install"
Executing "make --directory build/clang++/debug --jobs 8 install"
Executing "make --directory build/clang++/release --jobs 8 install"

$ exec-helper build-only --compiler g++ --mode release # Only build the g++ build in release mode
Executing make --directory build/g++/release --jobs 8

$ exec-helper install --compiler g++ --mode debug RelWithDebInfo # Install a subset - even using ones not listed in the default values
Executing make --directory build/g++/debug --jobs 8 install
Executing make --directory build/g++/RelWithDebInfo --jobs 8 install

Installation

See INSTALL [https://exec-helper.readthedocs.io/en/master/INSTALL.html] for more information on:

	Using one of the available packages or installers

	(Cross-)build from source

Documentation

See documentation [http://exec-helper.readthedocs.io] for the latest documentation.

Usage

see exec-helper [https://exec-helper.readthedocs.io/en/master/src/applications/exec-helper.html] for usage information.

Configuration

See exec-helper-config [https://exec-helper.readthedocs.io/en/master/src/config/docs/exec-helper-config.html] for information on the configuration file format.

Available plugins

See exec-helper-plugins [https://exec-helper.readthedocs.io/en/master/src/plugins/docs/exec-helper-plugins.html] for a list of all available plugins.

Writing custom plugins

See exec-helper-custom-plugins [https://exec-helper.readthedocs.io/en/master/src/plugins/docs/exec-helper-custom-plugins.html] for a guide on writing your own plugins.

Code quality

The source code of this project is continuously analyzed by multiple tools in an attempt to catch and fix issues and bugs as quickly as possible. Released versions should have passed the analysis from the following tools:

	AddressSanitizer [https://clang.llvm.org/docs/AddressSanitizer.html] (ASan)

	clang-format [https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html]

	clang-static-analyzer [https://clang-analyzer.llvm.org]

	clang-tidy [http://clang.llvm.org/extra/clang-tidy]

	cppcheck [http://cppcheck.sourceforge.net]

	License Scanning (by Gitlab)

	pmd [https://pmd.github.io] (cpd)

	Static Application Security Testing [https://docs.gitlab.com/ee/user/application_security/sast] (SAST by Gitlab)

	Valgrind [http://valgrind.org] (memcheck)

	UndefinedBehaviorSanitizer [https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html] (UBSan)

Check the .exec-helper file for detailed information about how these analysis methods are configured and used. The analysis tools can be executed locally using exec-helper with this project.

Installation instructions

Installing from package

Arch Linux based distributions

Arch linux users can:

	*. Use the pre-built Arch Linux pre-built binary package:

	Add to /etc/pacman.conf:

[home_bverhagen_exec-helper_Arch]
SigLevel = Optional TrustAll
Server = https://download.opensuse.org/repositories/home:/bverhagen:/exec-helper/Arch/x86_64/

Then:

curl -L -O https://download.opensuse.org/repositories/home:/bverhagen:/exec-helper/Arch/x86_64/home_bverhagen_exec-helper_Arch.key
sudo pacman-key --add home_bverhagen_exec-helper_Arch.key
sudo pacman-key --lsign-key C6DA27F1EB5EE305

*. Use the exec-helper (AUR) package [https://aur.archlinux.org/packages/exec-helper]
*. Check out the exec-helper-package [https://github.com/bverhagen/exec-helper-package] project for building the package from source. See the Building from source section.

Ubuntu

note: The support of non-LTS versions is rather limited. You are welcome to contribute if one is missing!

Ubuntu users (Bionic and later) can:

*. Add the PPA on Launchpad [https://launchpad.net/~bverhagen/+archive/ubuntu/exec-helper] to your sources
*. Check out the exec-helper-package [https://github.com/bverhagen/exec-helper-package] project for building the package from source. See the Building from source section.

openSUSE

note: Tumbleweed an Leap 15.4 and later are supported.

openSUSE users can:

*. Check out the binaries from the home:bverhagen:exec-helper [https://build.opensuse.org/project/show/home:bverhagen:exec-helper] project on OBS
*. Check out the exec-helper-package [https://github.com/bverhagen/exec-helper-package] project for building the package from source. See the Building from source section.

Other distributions

Checkout the Building from source section.

Building from source

Requirements

Build tools

	A C++ 17 compatible compiler. Tested with: gcc, clang and MSVC 2017 (14.1)

	meson

	ninja

	make for the quick install

	Sphinx for generating man-pages and general documentation

	Doxygen (1.8.15 or newer) for building API documentation (optional)

	gitchangelog for building the changelog (optional)

Build dependencies

	POSIX compliant operating system

	boost-program-options [https://github.com/boostorg/program_options] (1.64 or newer) development files

	boost-log [https://github.com/boostorg/log] (1.64 or newer) development files

	yaml-cpp [https://github.com/jbeder/yaml-cpp] (0.5.3 or newer) development files (optional, will be downloaded and compiled in statically if missing)

	lua [https://www.lua.org/] (5.3 or newer) development files (optional, will be downloaded and compiled in statically if missing)

	readline [https://tiswww.case.edu/php/chet/readline/rltop.html] development files (*NIX systems): required if not using the system Lua.

Quick installation

$ make
$ sudo make install

Use

$ make help

for an overview of the available quick installation targets and for an overview of the (very limited) available configuration options.

Advanced installation

CMake is the build system. The Makefile mentioned in the quick installation is a simple wrapper around a more complex - and more configurable - CMake invocation.

It has the following project-specific configuration options:

	
USE_SYSTEM_YAML_CPP

	Use the yaml-cpp [https://github.com/jbeder/yaml-cpp] library installed on the system. If switched off, the library will be automatically installed locally during the build. Default: auto

	
USE_SYSTEM_LUAJIT

	Use the luaJIT [https://luajit.org/] library installed on the system. If switched off, the library will be automatically installed locally during the build. Default: auto

	
POSITION_INDEPENDENT_CODE

	Build using position independent code [https://cmake.org/cmake/help/latest/variable/CMAKE_POSITION_INDEPENDENT_CODE.html]. Default: ON

	
ENABLE_TESTING

	Enable building the testing infrastructure. Default: ON

	
BUILD_MAN_DOCUMENTATION

	Generate the man-pages for this project

	
BUILD_HTML_DOCUMENTATION

	Generate the HTML documentation for this project

	
BUILD_XML_DOCUMENTATION

	Generate the XML documentation for this project

Build tests

Testing is enabled by setting the CMake configuration option ENABLE_TESTING to ON.

The tests require, in addition to all dependencies above, the following dependencies:

	Catch2 [https://github.com/catchorg/Catch2] unittest framework development files (optional, for building the tests)

	Rapidcheck [https://github.com/emil-e/rapidcheck] property based unittest framework development files (optional, for building the tests)

Testing related configuration options:

	
ENABLE_WERROR

	Enable warning as error during compilation (only supported for GCC and clang)

	
LIMITED_OPTIMIZATION

	Build with limited optimization (typically -O1, only supported for GCC and clang). This is typically used for running tools like valgrind.

	
TERMINATE_ON_ASSERT_FAILURE

	Explicitly terminate when an assert fires.

	
USE_SYSTEM_CATCH

	Use the Catch2 [https://github.com/catchorg/Catch2] library installed on the system. If switched off, the library will be automatically installed locally during the build. Default: auto

	
USE_SYSTEM_RAPIDCHECK

	Use the Rapidcheck [https://github.com/emil-e/rapidcheck] library installed on the system. If switched off, the library will be automatically installed locally during the build. Default: auto

Cross compilation

Exec-helper supports both native and cross compilation (including building with a custom sysroot) builds. Cross compilation requires invoking cmake directly and appending -DCMAKE_TOOLCHAIN_FILE=<toolchain-file> to the cmake initialization command. Check the toolchain.cmake.in file for a template on setting up the toolchain file for cross compilation and the Makefile for a template of the cmake initialization command.

exec-helper

Synopsis

exec-helper <commands> [options]

eh <commands> [options]

Description

The exec-helper utility is a meta-wrapper for executables, optimizing one of the slowest links in most workflows: you. It enables the user to optimize the existing workflow in multiple minor and major ways:

	It minimizes the amount of typing while eliminating redundancies

	It chains multiple commands, inserting patterns at specified places

	It avoids having to memorize or search for the right invocations for more complicated commands

	It allows to write your system- and project-specific plugins for more advanced optimizations

These optimizations enable efficient users to do what they like to do the most: hang around the coffee machine with peace of mind.

Options

Mandatory arguments to long options are mandatory for short options too. Arguments to options can be specified by appending the option with ‘=ARG’ or ‘ ARG’. This manual will further use the ‘=ARG’ notation. Multiple arguments can be specified, if appropriate and without the need to repeat the option, by using spaces in between the arguments.

	
-h, --help

	Display a usage message on standard output and exit successfully.

	
-v, --verbose

	Enable the verbose flag for the command if available.

	
-z, --command=COMMAND

	Execute one or more configured COMMANDs. This is an alias for the <commands> mandatory option above.

	
-s, --settings-file[=FILE]

	Use FILE as the settings file for the exec-helper configuration. Default: .exec-helper.
Exec-helper will use the first file it finds with the given FILE name. It will search in order in the following locations:

	The current working directory

	The parent directories of the working directory. The parent directories are searched in reversed order, meaning that the direct parent of the current working directory is searched first, next the direct parent of the direct parent of the current working directory and so-forth until the root directory is reached.

	The HOME directory of the caller.

	
-j, --jobs[=JOBS]

	Use the specified number of JOBS for each task (if supported). Use auto to let exec-helper determine an appropriate number. Use a value of 1 for running jobs single-threaded. Default: auto.

	
-n, --dry-run

	Print the commands that would be executed, but do not execute them.

	
-k, --keep-going

	Execute all scheduled commands, even if one or more of them fail.

Configured options

Additional command-line options for exec-helper can be configured in the settings file. Refer to the exec-helper-config(5) documentation for more information.

Exit status

When exec-helper is called improperly or its plugins are invoked improperly, exec-helper will exit with a status of one. In other cases, it exits with the same status as the last failed command or zero if all commands are executed successfully.

Auto-completion

Auto-completions are available for the Bash and Zsh shell. Package maintainers receive the tools to automatically enable these completions. If your installation package does not do this, you can enable them yourself by adding source <install-directory>/share/exec-helper/completions/init-completion.sh to your profile or bashrc.

See also

See Configuration (5) for information about the configuration file.

See Plugins (5) for the available plugins and their configuration options.

Configuration

Description

Exec-helper configuration files are written in the YAML 1.2 specification.

Mandatory keys

A valid configuration file must contain at least the following keys on the root level of the configuration file:

	
commands

	

The commands that are configured in the configuration file. It will either contain a list of commands or a list of the commands as keys with an explanation of the command as a value. These formats can not be used interchangeably.

	
<command-keys>

	

For every command defined under the commands key, the configuration must define this command as a key in the root of the configuration file. The value of the key must either be a registered plugin or another command.

	
<plugin-keys>

	

For at least every plugin that is used by a command key, configure the specifics of the plugin (if applicable).

Optional keys

Optionally the configuration file contains the following keys on the root level of the configuration file:

	
patterns

	Patterns are parts of the configuration that will be replaced by its value when evaluated by exec-helper. The patterns keyword describes a list of patterns identified by their key. See the @ref exec-helper-config-patterns for more information about how to define a pattern.

	
additional-search-paths

	An ordered list of additional search paths to use when searching for plugins. The search paths can be absolute or relative w.r.t. the parent path of the settings file in which these paths are defined.

Defining search paths is useful for extending exec-helper with your own custom plugins or for overwriting or extending the functionality in the provided plugins. See [exec-helper-custom-plugins](@ref exec-helper-custom-plugins)(5) for more information on writing a custom plugin.

The paths defined in this list take precedence over the system search paths for modules with the same name. A higher position in this list implicates higher precedence.

Working directory

Configured commands are executed from the so-called working directory. Executing commands in a different working directory will not affect your current working directory (e.g. when executing from a shell). Each separately configured command can be executed in a separate working directory.

The working directory is the directory that is associated with the first of the following lines whose requirement is met:
1. The working-dir configuration setting is configured for the specific command. The value of the working-dir configuration key can be an absolute path to the working directory or a relative one w.r.t. the directory of the considered configuration file. If the command should be executed in the actual working directory, use <working-dir> as the value in the configuration file.
2. The directory of the considered configuration file.

Paths

All relative paths in the configuration should be relative to the directory in which the configuration resides. While relative paths are convenient for users as they can freely choose the root directory of an application, some applications require an absolute path. In such case, use the ${PWD} environment variable (both POSIX and non-POSIX systems) to convert a relative path in your configuration into an absolute path for calling these particular applications.

Example configuration

commands: # The mandatory commands key
 build: Build the project # A map of command keys with their explanation
 clean: Clean the project
 rebuild: Build + clean

patterns: # Declare the patterns for this configuration file
 COMPILER: # Declare the COMPILER pattern
 default-values: # Default values to use for the pattern
 - g++
 - clang++
 short-option: c # Declare values for this pattern by using the -c [VALUES] option when calling exec-helper
 long-option: compiler # Declare values for this pattern by using the --compiler [VALUES] option when calling exec-helper
 MODE: # Declare the MODE pattern
 default-values:
 - debug
 - release
 short-option: m
 long-option: mode

additional-search-paths:
 - /tmp

Define the commands listed under 'commands'
build:
 - command-line-command # Use the command-line-command plugin when using the 'build' command

clean:
 - command-line-command # Use the command-line-command plugin when using the 'clean' command

rebuild:
 - clean # Call the 'clean' command when calling the 'rebuild' command
 - build # Call the 'build' command when calling the 'rebuild' command

command-line-command: # Configure the command-line-command
 patterns: # Define the default patterns to use
 - COMPILER
 - MODE

 command-line: # Configure the execution when the specific command is not listed. Will be executed from the directory of this configuration file
 - echo
 - building
 - using
 - "{COMPILER}" # This value will be replaced by the COMPILER pattern value
 - in
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - mode.
 - wd=$(pwd) # This command will be executed in a subshell and replaced by its value before the actual command is executed

 clean: # Configure the execution of the build command
 patterns: # Overwrite the parent patterns
 - MODE
 - EH_WORKING_DIR # Use the EH_WORKING_DIR pattern
 command-line:
 - echo
 - cleaning
 - mode.
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - wd=$(pwd)
 working-dir: "{EH_WORKING_DIR}" # The command will be executed from the current working directory rather than from the directory of this configuration file

See also

See Patterns (5) for more information on defining and using patterns.

See Environment (5) for more information on configuring execution environments.

See exec-helper (1) for information about the usage of exec-helper.

See Plugins (5) for the available plugins and their configuration options.

See Custom plugins (5) for the available plugins and their configuration options.

Environment

Description

Environment variables can be configured in the configuration file. They will only be set for the particular command(s) defined by the relevant section of the configuration.

Environment variables can not be set directly in a command line command. The environment configuration key needs to be used for this. See section ‘environment’.

Environment

The environment keyword can be set for every plugin that supports the env configuration setting. Check the documentation on a specific plugin to check whether the plugin supports this configuration setting.

The environment keyword must contain a map of key-value pairs, where the key is the name of the environment variable and the value is the value associated with the specified environment variable. Patterns can be used for the environment these variable values too.

Note: The PWD environment variable, following POSIX convention, is set by the application to the working directory of the task. Therefore, its value cannot be overriden in the configuration.

Example configuration

commands: # The mandatory commands key
 build: Build the project # A map of command keys with their explanation
 clean: Clean the project
 rebuild: Build + clean

patterns: # Declare the patterns for this configuration file
 COMPILER: # Declare the COMPILER pattern
 default-values: # Default values to use for the pattern
 - g++
 - clang++
 short-option: c # Declare values for this pattern by using the -c [VALUES] option when calling exec-helper
 long-option: compiler # Declare values for this pattern by using the --compiler [VALUES] option when calling exec-helper
 MODE: # Declare the MODE pattern
 default-values:
 - debug
 - release
 short-option: m
 long-option: mode

additional-search-paths:
 - /tmp

Define the commands listed under 'commands'
build:
 - command-line-command # Use the command-line-command plugin when using the 'build' command

clean:
 - command-line-command # Use the command-line-command plugin when using the 'clean' command

rebuild:
 - clean # Call the 'clean' command when calling the 'rebuild' command
 - build # Call the 'build' command when calling the 'rebuild' command

command-line-command: # Configure the command-line-command
 patterns: # Define the default patterns to use
 - COMPILER
 - MODE

 command-line: # Configure the execution when the specific command is not listed. Will be executed from the directory of this configuration file
 - echo
 - building
 - using
 - "{COMPILER}" # This value will be replaced by the COMPILER pattern value
 - in
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - mode.
 - wd=$(pwd) # This command will be executed in a subshell and replaced by its value before the actual command is executed

 clean: # Configure the execution of the build command
 patterns: # Overwrite the parent patterns
 - MODE
 - EH_WORKING_DIR # Use the EH_WORKING_DIR pattern
 command-line:
 - echo
 - cleaning
 - mode.
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - wd=$(pwd)
 working-dir: "{EH_WORKING_DIR}" # The command will be executed from the current working directory rather than from the directory of this configuration file

See also

See Configuration (5) for information about the configuration file.

Patterns

Description

Patterns are parts of the configuration that will be replaced by its value when evaluated by exec-helper. The patterns keyword describes a list of patterns identified by their key. See the ‘patterns’ section for more information about how to define a pattern.

Patterns can be used to:

	add options to the exec-helper command line

	centralize a value in a variable

	allow iterating over multiple configurations

	control the configurations to iterate over

Patterns

A pattern can contain the following fields:

	
default-values

	A list of default values to use when no values have been defined.

	
short-option

	The short option on the command line associated with this pattern

	
long-option

	The long option on the command line associated with this pattern

Predefined patterns

Exec-helper predefines some specific patterns for convenience:

	EH_ROOT_DIR: contains the absolute path to the directory where the exec-helper configuration is located. Useful for converting relative paths to absolute paths for tools that require it (e.g. when setting your PATH)

	EH_WORKING_DIR: contains the working directory from where the exec-helper executable is called.

Example configuration

commands: # The mandatory commands key
 build: Build the project # A map of command keys with their explanation
 clean: Clean the project
 rebuild: Build + clean

patterns: # Declare the patterns for this configuration file
 COMPILER: # Declare the COMPILER pattern
 default-values: # Default values to use for the pattern
 - g++
 - clang++
 short-option: c # Declare values for this pattern by using the -c [VALUES] option when calling exec-helper
 long-option: compiler # Declare values for this pattern by using the --compiler [VALUES] option when calling exec-helper
 MODE: # Declare the MODE pattern
 default-values:
 - debug
 - release
 short-option: m
 long-option: mode

additional-search-paths:
 - /tmp

Define the commands listed under 'commands'
build:
 - command-line-command # Use the command-line-command plugin when using the 'build' command

clean:
 - command-line-command # Use the command-line-command plugin when using the 'clean' command

rebuild:
 - clean # Call the 'clean' command when calling the 'rebuild' command
 - build # Call the 'build' command when calling the 'rebuild' command

command-line-command: # Configure the command-line-command
 patterns: # Define the default patterns to use
 - COMPILER
 - MODE

 command-line: # Configure the execution when the specific command is not listed. Will be executed from the directory of this configuration file
 - echo
 - building
 - using
 - "{COMPILER}" # This value will be replaced by the COMPILER pattern value
 - in
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - mode.
 - wd=$(pwd) # This command will be executed in a subshell and replaced by its value before the actual command is executed

 clean: # Configure the execution of the build command
 patterns: # Overwrite the parent patterns
 - MODE
 - EH_WORKING_DIR # Use the EH_WORKING_DIR pattern
 command-line:
 - echo
 - cleaning
 - mode.
 - "{MODE}" # This value will be replaced by the MODE pattern value
 - wd=$(pwd)
 working-dir: "{EH_WORKING_DIR}" # The command will be executed from the current working directory rather than from the directory of this configuration file

See also

See Configuration (5) for information about the configuration file.

Plugins

Description

This document describes the list of plugins that can be used in the associated exec-helper binaries.

General plugins

	
command-line-command

	The command-line-command plugin is used for executing arbitrary command line commands.
See Command-line-command plugin (5).

	
sh

	The sh plugin is used for executing arbitrary commands in the sh shell. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.
See Sh plugin (5).

	
bash

	The bash plugin is used for executing arbitrary commands in the bash shell. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.
See Bash plugin (5).

	
fish

	The fish plugin is used for executing arbitrary commands in the fish shell. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.
See Fish plugin (5).

	
zsh

	The zsh plugin is used for executing arbitrary commands in the zsh shell. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.
See Zsh plugin (5).

	
selector

	The selector plugin is used for selecting certain configuration paths based on the value of a pattern. See Selector plugin (5).

	
docker

	The docker plugin is used for running commands inside a Docker container. See Docker plugin (5).

Build plugins

	
bootstrap

	The bootstrap plugin is used for calling bootstrap scripts, typically used as a step in a build chain. See Bootstrap plugin (5).

	
make

	The make plugin is used for running the make build system. See Make plugin (5).

	
scons

	The scons plugin is used for running the scons build system. See Scons plugin (5).

	
cmake

	The cmake plugin is used for running the CMake build system. See CMake plugin (5).

	
meson

	The meson plugin is used for running the CMake build system. See Meson plugin (5).

Analysis plugins

	
clang-static-analyzer

	The clang-static-analyzer plugin is used for applying the clang static analyzer tool on source code files. See Clang-static-analyzer plugin (5).

	
clang-tidy

	The clang-tidy plugin is used for applying the clang tidy tool on source code files. See Clang-tidy plugin (5).

	
cppcheck

	The cppcheck plugin is used for applying cppcheck on source code files. See Cppcheck plugin (5).

	
lcov

	The lcov plugin is used for applying the lcov code coverage analysis tool. See Lcov plugin (5).

	
pmd

	The pmd plugin is used for applying pmd analysis on source code files. See Pmd plugin (5).

	
valgrind

	The valgrind plugin is used for applying valgrind analysis. See Valgrind plugin (5).

Custom plugins

You can write your own plugins and integrate them with exec-helper. These plugins are first-class citizens: you can write plugins that overwrite the system plugins themselves. See Custom plugins (5) for more information on writing your own plugins.

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Custom plugins

Where to put your plugins

Exec-helper searches dynamically for (most of) its plugins in all the plugin search paths. It searches in the following locations (earlier listed locations take precedence over later listed locations for plugins with the same name):

	Using the --additional-search-path command-line option. Multiple paths can be passed to it using multiple arguments. Earlier mentioned paths take precedence over later mentioned paths. The paths can be absolute or relative w.r.t. the used exec-helper configuration file. E.g.:

exec-helper build --additional-search-path blaat /tmp

will add the relative path blaat and the absolute path /tmp to the plugin search paths.

	Using the additional-search-paths key in the exec-helper configuration file. The key takes an ordered list containing absolute or relative (w.r.t. the exec-helper configuration file it is mentioned in) paths. Earlier listed elements take precedence over lower listed elements. E.g.:

additional-search-paths:
 - blaat
 - /tmp

	The system plugin paths. These paths contain (most of) the default modules bundled with exec-helper. It is not recommended to add your custom plugins to any of these paths.

Listing the modules

Exec-helper lists the modules it currently finds by using the --list-plugins command-line option.

Writing a lua plugin

Exec-helper supports luaJIT 2.0.5. LuaJIT is a Lua 5.1 implementation with some additional features from Lua 5.2. All LuaJIT functionality is embedded in the exec-helper binary, no LuaJIT install is required for running the plugin.

Exec-helper treats all files in the plugin search paths with a lua suffix as a compatible lua plugin. The name of the module is derived from the rest of the filename.

The interface

A lua plugin is called within a wider (lua) context containing some objects and (convenience) functions.

Exec-helper specific functions

The following exec-helper specific functions are available next to the lua 5.1 functions:

	
get_commandline()

	Returns a list of the command-line arguments set by the command-line key in the configuration. Use this to allow users of your plugin to freely set additional, plugin-specific command-line settings that can not be set by other configuration options. These additional command-line settings must be added explicitly by this plugin in the right position. E.g:

task:add_args(get_commandline())

	
get_environment()

	Returns a two-level Lua table containing the environment in which the task will be executed. The plugin can read and modify this environment. Values set by the environment key in the configuration are added automatically to this list before this plugin is called, there is no need to do this explicitly.

Note: The PWD environment variable, following POSIX convention, is set by the application to the working directory of the task. Therefore, its value cannot be overriden in a custom module.

	
get_verbose(string arg)

	Add arg to the current tasks’ command line if verbose mode is activated. This function does nothing if verbose mode is not activated. E.g.:

task:add_args(get_verbose('--debug'))

	
register_task(Task task)

	Registers the given task as a task to execute by the executor(s). Patterns associated with the task will be automatically permutated and substituted. E.g.:

register_task(task)

	
register_tasks(array<Task> tasks)

	Registers the given tasks as multiple tasks to execute by the executor(s). Patterns associated with the task will be automatically permutated and substituted. E.g.:

register_tasks(tasks)

	
run_target(Task task, array<string> targets)

	Applies the given targets using the given task as their base task. These targets may contain patterns. The result of these applications is returned as an array<Task>. The returned tasks must be explicitly registered in order to be executed. E.g.:

run_target(task, {'cmake', 'ninja'})

	
user_feedback_error(string message)

	Show the given message as an error to the user. E.g.:

user_feedback_error('You should not do that!')

	
input_error(string message)

	Show the given message as an error to the user and stop execution of this module. E.g.:

input_error('Cowardly refusing to perform that action!')

Exec-helper specific types

The following types (classes) are available in your module:

	
Config

	Behaves like an ordinary lua table. Only reading from it using the access operator ([key]) is allowed. The access operator takes a string and returns a Lua table.

	
Task

	Contains the task that is being built. It has the following member functions:

	add_args(array<string> args): Append the given arguments to this task.

	new(Task task): Create a new, default task with an empty command line.

	copy(Task task): Returns a copy of the given task.

Pre-defined objects

The following pre-defined objects are automatically present when your module is called:

	
verbose

	A boolean indicating whether the verbose command-line flag was set for this invocation.

	
jobs

	Integer indicating the number of jobs to use for executing this plugin, if the plugin supports parallel job execution. Ignore this if this is not the case.

Example:

task:add_args({'--jobs', jobs})

Adds --jobs \<value\> to the command line of the given task where <value> is the value of the configured number of jobs.

	
config

	A pure Lua table containing the configuration of the particular exec-helper configuration into one easy-to-navigate syntax tree. The tree may contain multiple levels. Accessing a table value in Lua returns a new Lua table. Use the one() and list() function to convert the table to a single value or list respectively. These functions will return nil when the given key has no value. The functions distinguish between no value (nil) and an empty value (e.g. an empty list).

Example:

task:add_args({'--directory', one(config['build-dir']) or '.'})

Adds --directory \<value\> to the task command line, where <value> is one value set by the build-dir key or . when no such key exists in the configuration of this plugin.

	
task

	A Task object containing the current context for executing the task, this may include prefixes from other plugins. It is not possible to erase these prefixes. If your module requires pre- or post-tasks, you can create one or more new tasks and register it. Similarly, it is possible to create new tasks with the same context as the given task variable by copy constructing it. Use the Lua : operator for calling member functions of a task.

For example, to create a module that calls echo hello on its invocation, use:

task:add_args({'echo', 'hello'})

Example

A module for a directly callable tool

Let’s implement a simple module for calling make called make:

make.lua:

task:add_args({'make'})

task:add_args({'--directory', one(config['build-dir']) or '.'})
task:add_args(get_verbose('--debug'))
task:add_args({'--jobs', one(config['jobs']) or jobs})
task:add_args(get_commandline())

register_task(task)

This module adds make with some additional arguments from the config and the options to the existing task task. At the end, it registers the task for execution.

The relevant section in the users’ exec-helper configuration may look like:

commands:
 build: Build the project

patterns:
 MODE:
 default-values:
 - debug
 - release
 short-option: m
 long-option: mode

build:
 - make

make:
 patterns:
 - MODE

 build:
 build-dir: "build/{MODE}"
 jobs: 3
 command-line: [--dry-run, --keep-going]

Running eh build --mode release --verbose will execute the command-line:

make --directory build/release --debug --jobs 3 --dry-run --keep-going

A module calling an other command

Let’s implement a simple module for clang-static-analyzer. Per the docs, this analyzer is used by prepending scan-build <options> <build command> to the build command line. Obviously, users will already have configured a command (e.g. build) for building the project without any analysis. For maintenance and convenience purposes, we do not want the user to replicate this build command for this plugin, but rather, we want our plugin to add some arguments to the tasks’ command line and call the configured build-command for extending the task with the actual build configuration.

Let’s implement this module, called under the name some-analyzer:

some-analyzer.lua:

task:add_args({'scan-build'})
task:add_args(get_verbose('-v'))
task:add_args(get_commandline())

local build_commands = list(config['build-command'])

if type(build_commands) == 'nil' then
 input_error('Clang-static-analyzer: one must define at least one build command')
end

if type(next(build_commands)) == 'nil' then
 user_feedback_error('Clang-static-analyzer: one must define at least one build command')
 input_error('Clang-static-analyzer: one must define at least one build command')
end

register_tasks(run_target(task, build_commands))

This module adds scan-build and some additional arguments to the command line of the task. Next, it takes the build-command configuration values, does some validity checks on it, and requests exec-helper to extend the command with the arguments of the given command values.

The relevant section in the users’ exec-helper configuration (combined with the module above for implementing the build command) may look like:

build:
 - make

make:
 build-dir: build

some-analyzer:
 build-command: build
 command-line:
 - --keep-going

Running eh some-analyzer --jobs 4 would execute the command line:

scan-build --keep-going make --directory build --jobs 4

Bash plugin

Description

The bash plugin is used for executing commands in the bash shell, rather than executing the command right away. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.

Mandatory settings

Mandatory settings for all modes

	
command

	Command to execute in the shell, as a string. See the -c option of bash for more information.

Optional settings

The configuration of the bash plugin may contain the following additional settings:

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

Example

Configuration

commands: # Define the commands that can be run
 example: run the bash example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Define the default value
 - world!

example:
 - bash # Use the bash plugin when running the 'example' command

bash: # Sh plugin configuration settings
 example: # Settings specific to the 'example' command
 environment: # Define the environment
 EXAMPLE_ENVIRONMENT: hello
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo "working directory is $(pwd)"' # Define the shell command
 command-line: [-ex] # Pass additional command line arguments
 working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Bootstrap plugin

Description

The bootstrap is used for executing bootstrap files. This is often used in build chains.

Mandatory settings

There are no mandatory settings for the bootstrap plugin.

Optional settings

The configuration of the bootstrap plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
filename

	The name of the bootstrap script. Default: bootstrap.sh.

Example

Configuration

commands: # Define the commands that can be run
 example: run the bootstrap example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Only define the default value
 - world!

example:
 - bootstrap # Use the command-line-command plugin when running the 'example' command

bootstrap: # Bootstrap configuration settings
 example: # Settings specific to the 'example' command
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 filename: src/bootstrap-mock.sh # Set the name of the bootstrap script
 command-line: # Define 2 additional command line flags
 - "hello"
 - "{EXAMPLE_PATTERN}"

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Clang-static-analyzer plugin

Description

The clang-static-analyzer plugin is used for executing the clang-static-analyzer static code analysis tool.

Mandatory settings

The configuration of the clang-static-analyzer plugin must contain the follwing settings:

	
build-command

	The exec-helper build target command or plugin to execute for the analysis.

Optional settings

The configuration of the clang-static-analyzer plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the make example
 build: Build the files
 clean: Clean the build

patterns: # Define the patterns that can be used
 MAKE_TARGET: # Define make targets for building
 default-values: # Only define the default value
 - hello
 - world

example:
 - clean
 - clang-static-analyzer # Use the clang-static-analyzer plugin when running the 'example' command

build:
 - make

clean:
 - make

clang-static-analyzer: # Configure clang-static-analyzer
 build-command: build # Execute the 'build' command for building and analyzing the project
 command-line: # Add additional arguments to the clang-static-analyzer invocation
 - -enable-checker
 - alpha.clone.CloneChecker

make:
 build:
 patterns:
 - MAKE_TARGET
 command-line:
 - "{MAKE_TARGET}"
 clean:
 command-line:
 - clean

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
	rm -rf $(BUILD_DIR)

.PHONY: clean

src/hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

src/world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Clang-tidy plugin

Description

The clang-tidy plugin is used for executing the clang-tidy static code analysis tool.

Mandatory settings

There are no mandatory settings for the clang-tidy plugin.

Optional settings

The configuration of the clang-tidy plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
sources

	A list of sources that must be checked by the clang-tidy plugin. The sources may contain wildcards.

	
checks

	A list of checks that should be enabled or disabled. Enabling or disabling checks is done the same way as they are enabled on the clang-tidy command line. Default: no checks will be enabled or disabled on the command line, meaning the default checks enabled by clang will be checked.

	
warning-as-errors

	Threat warnings as errors.
The value associated with this key is either:

	A list of checks, defining which warnings will be threated as errors. See checks for the format.

	The single keyword all: means that all enabled checks will be threated as errors.

Note: This options is only supported if the clang-tidy binary supports the -warnings-as-error=<string> option.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the make example

patterns: # Define the patterns that can be used
 TARGET: # Define targets to check
 default-values: # Only define the default value
 - hello
 - world

example:
 - clang-tidy # Use the clang-tidy plugin when running the 'example' command

clang-tidy:
 patterns:
 - TARGET
 sources:
 - "src/{TARGET}.cpp"
 checks:
 - "*"
 - "cppcoreguidelines-*"
 - "modernize-*"
 - "performance-*"
 - "readability-*"
 - "-fuchsia-*"
 - "-llvmlibc-*"
 command-line:
 - -fix

Additional files

In order for the above example to work, the following files need to be created in the src directory:

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

CMake plugin

Description

The cmake plugin is used for generating, building and installing software using the CMake build generator system.

Mandatory settings

There are no mandatory settings for this plugin, though it is recommended to configure the mode setting explicitly.

Optional settings

The configuration of the make plugin may contain the following settings:

Settings for all modes

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
mode

	Set the mode of the CMake call for the specific command. Default: generate.

Supported modes are:

	Generate: For generating a build directory based on the CMake configuration in the source. This is often callend the configure or build init step.

	Build: Build the generated project

	Install: Install the generated project

	
build-dir

	The path to the build directory. This is either an absolute path are a path relative to the location of this file. Default: . (the directory of the exec-helper configuration).

Settings for the generate mode

	
source-dir

	The directory containing the root CMakeLists.txt file of the sources. Default: . (the directory of the exec-helper configuration).

	
generator

	The generator to use for generating the build directory. See the CMake documentation on which generators are supported for your platform and the value(s) to explicitly set them. Default: the default one for your system and environment. See the CMake documentation on the details.

	
defines

	A map of the build generator settings for configuring the generator.

Settings for the build mode

	
target

	The specific CMake target to build. Default: the default target. See the CMake documentation for more details.

	
config

	The configuration for multi-configuration tools. Default: the default configuration. See the CMake documentation for more details.

Settings for the install mode

	
config

	The configuration for multi-configuration tools. Default: the default configuration. See the CMake documentation for more details.

	
prefix

	Override the configured prefix set during the generate mode. Default: the default installation prefix. See the CMake documentation for more details.

	
component

	Limit installation to the given component. Default: all installation targets.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the cmake example
 clean: Clean the build
 run: Run the files that were built

patterns: # Define the patterns that can be used
 CMAKE_TARGET: # Define the CMAKE_TARGET pattern.
 default-values: # Only define the default value
 - hello
 - world

example:
 - build # Use the cmake plugin when running the 'example' command
 - run

build:
 - generate
 - build-only
 - install

generate: cmake
build-only: cmake
install: cmake

clean: # Use the cmake plugin when running the 'clean' command
 - cmake

run:
 - command-line-command

cmake:
 environment: # Define additional environment variables
 WORLD: "world!"
 patterns: # The patterns that are used by the cmake plugin
 - CMAKE_TARGET
 source-dir: . # Set the source dir for all cmake targets that do not further specialize this
 build-dir: build # Set the build dir for all cmake targets that do not further specialize this

 generate: # Specific settings for the 'generate' command
 mode: generate # Set the mode
 defines: # Set some defines
 CMAKE_BUILD_MODE: RelWithDebInfo
 command-line: # Define additional command line arguments
 - -Wno-dev # An example argument passed to cmake

 build-only: # Specific settings for the 'build-only' command
 mode: build # Set the mode

 install: # Specific settings for the 'install' command
 mode: install # Set the mode
 prefix: /tmp # Set the prefix
 component: runtime # Limit to installing 'runtime' components

 clean:
 mode: build
 target: clean

command-line-command:
 patterns:
 - CMAKE_TARGET
 command-line:
 - build/{CMAKE_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)
project(cmake-example CXX)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

add_executable(hello src/hello.cpp)
add_executable(world src/world.cpp)
install(TARGETS hello world DESTINATION bin COMPONENT runtime)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Command-line-command plugin

Description

The command-line-command plugin is used for executing arbitrary command lines. This plugin can be used for constructing the command line for commands that do not have a corresponding plugin available.

Mandatory settings

The configuration of the command-line-command must contain the following settings:

	
command-line

	The command-line to execute. There are two different usages:

	No identification key: Set one command line as a list of separate arguments. This form is only usable if only one line needs to be executed.

	With identification key: Make a map with arbitrary keys, where each associated value is one command line, described as a list of separate arguments. This form is usable if one or more lines need to be executed. Multiple commands are executed in the order the identification keys are defined.

Note: see the documentation of wordexp (3) for the limitations on what characters are not allowed in the command-line command.

Optional settings

The configuration of the command-line-command plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

Example

Configuration

commands: # Define the commands that can be run
 example: run the command-line example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Define the default value
 - world!

example:
 - command-line-command # Use the command-line-command plugin when running the 'example' command

command-line-command: # Command-line-command configuration settings
 example: # Settings specific to the 'example' command
 environment: # Define the environment
 EXAMPLE_ENVIRONMENT: hello
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 command-line: # Define 2 command lines
 - hello: [echo, "${EXAMPLE_ENVIRONMENT}"]
 - world: # The same as [echo, "{EXAMPLE_PATTERN}"]
 - echo
 - "{EXAMPLE_PATTERN}"
 - workingdir: [echo, working, directory, is, "$(pwd)"] # Print out the current working directory
 working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Cppcheck plugin

Description

The cppcheck plugin is used for executing the cppcheck static code analysis tool.

Mandatory settings

There are no mandatory settings for the cppcheck plugin.

Optional settings

The configuration of the cppcheck plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
enable-checks

	A list of checks that should be enabled or disabled. Check the documentation of cppcheck for a list of all the available checks. Default: all.

	
src-dir

	The base directory containing all the files to check. Default: . (the current working directory).

Example

Configuration

commands: # Define the commands that can be run
 example: Run the cppcheck example

patterns: # Define the patterns that can be used
 TARGET: # Define targets to check
 default-values: # Only define the default value
 - hello
 - world

example:
 - cppcheck # Use the cppcheck plugin when running the 'example' command

cppcheck: # Cppcheck configuration for the 'example' command
 example:
 patterns: # Define the patterns to use
 - TARGET
 src-dir: # Define the source dir to look in
 - src
 target-path: # The target path to look in
 - "{TARGET}.cpp"
 enable-checks: # The list of additional checks to enable
 - warning
 - style
 - performance
 - portability
 - information
 command-line: # Set additional arguments
 - --error-exitcode=255

Additional files

In order for the above example to work, the following files need to be created in the src directory:

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Docker plugin

Description

The Docker plugin is used for running or attaching to a Docker container.

Mandatory settings

Mandatory settings change depending on which mode is selected. See mode for more information.

Optional settings

The configuration of the make plugin may contain the following settings:

Settings for all modes

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
mode

	Set the mode of the Docker call for the specific command. Default: exec.

Supported modes are:

	run: Create a new container based on the given image and runs the given command. Note: use --rm as an additional command line argument to automatically clean up the created container.

	exec: Run the command in the given, actively running, container.

	
env

	A map of environment key/value pairs set inside the container. Default: an empty map.

	
interactive

	Boolean indicating whether to run interactively inside the container. Check the Docker documentation for more information. Default: same as the used Docker default.

	
tty

	Boolean indicating whether to use a pseudo-tty inside the container. Check the Docker documentation for more information. Default: same as the used Docker default.

	
privileged

	Boolean indicating whether to run the container in privileged mode. Check the Docker documentation for more information. Default: no.

	
user

	Set the given user inside the container. Check the Docker documentation for more information. Default: the container default.

Settings for the run mode

	
volumes

	List of volumes to be mounted into the container. Eeach value maps directly to a Docker volume configuration. Check the Docker documentation for all the options and formats that can be used. Default: an empty list.

	
image

	The Docker image to use as the base image for creating a new container. This configuration option is mandatory when the plugin is in run mode.

Settings for the exec mode

	
container

	The Docker container to execute the command in. Note that the container must already be running when this command is called. This configuration option is mandatory when the plugin is in exec mode.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the docker example
 run: Show the contents of the /example folder

patterns: # Define the patterns that can be used
 IMAGE: # Define the IMAGE
 default-values: # Define the default value(s)
 - ubuntu:rolling
 short-option: i # Define the short option for overriding the default value
 long-option: image # Define the long option for overriding the default value

 COMMAND:
 default-values:
 - ls
 - echo

example:
 - docker # Use the docker plugin when running the 'example' command

ls:
 - command-line-command # Use the 'command-line-command' plugin for constructing the 'ls' command

echo:
 - command-line-command # Use the 'command-line-command' plugin for constructing the 'echo' command

docker:
 example:
 patterns: # Define the patterns we will use for this command.
 - IMAGE # Use the IMAGE pattern => all occurences of '{IMAGE}' will be replaced by the actual value
 - COMMAND
 mode: run # Use the 'run' mode
 image: "{IMAGE}" # Set the image. The quotes "" are required due to the YAML specification and its JSON compatibility.
 envs: # Define additional environment variables inside the container
 SHELL: xterm-color # Use a YAML dictionary to define all kay-value pairs
 interactive: yes # Run an interactive shell in the container
 tty: no # Do not attach to a pseudo-tty in the container
 privileged: no # Do not run a privileged container
 user: root # Explicitly run as the root user
 volumes:
 - "${PWD}:/examples" # Mount the folder of this configuration file in the container on the /examples path
 targets: "{COMMAND}" # Run the 'run' task in the configured container

command-line-command:
 ls: # Configure the 'run' command
 command-line: [ls, -la, /root] # Run 'ls -la /root'

 echo: # configure the 'echo' command
 command-line: [echo, Hello world] # Run 'echo Hello world'

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Execute plugin

Description

The execute plugin is used for executing specific plugins or, if no associated plugin is found, following commands defined in the configuration. This plugin is mainly used by other plugins that want to execute other commands.

Mandatory settings

There are no mandatory settings for this plugin.

Optional settings

There are no optional settings for this plugin.

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Fish plugin

Description

The fish plugin is used for executing commands in the fish shell, rather than executing the command right away. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.

Mandatory settings

Mandatory settings for all modes

	
command

	Command to execute in the shell, as a string. See the -c option of fish for more information.

Optional settings

The configuration of the fish plugin may contain the following additional settings:

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

Example

Configuration

commands: # Define the commands that can be run
 example: run the fish example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Define the default value
 - world!

example:
 - fish # Use the fish plugin when running the 'example' command

fish: # Sh plugin configuration settings
 example: # Settings specific to the 'example' command
 environment: # Define the environment
 EXAMPLE_ENVIRONMENT: hello
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 command: 'echo {$EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo "working directory is" (pwd)' # Define the shell command
 command-line: [--debug=exec-fork] # Pass additional command line arguments
 working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Lcov plugin

Description

The lcov plugin is used for executing code coverage analysis using lcov.

Mandatory settings

The configuration of the lcov plugin must contain the following settings:

	
run-command

	The exec-helper command or plugin to use for running the binaries for which the coverage needs to be analyzed.

Optional settings

The configuration of the lcov plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
info-file

	The lcov .info file to use for the analysis. Default: lcov-plugin.info.

	
base-directory

	The base directory to use for the lcov analysis. Check the lcov documentation on the --base-directory option for more information. Default: . (the current working directory).

	
directory

	Use the coverage data files in the given directory. Check the lcov documentation on the --directory option for more information. Default: . (the current working directory).

	
zero-counters

	Set this option to yes to reset the coverage counters before starting the analysis. All other values are threated as no. Default: no.

	
gen-html

	Set this option to yes to enable HTML report generation of the coverage data. Default: no.

	
gen-html-output

	Set the output directory of the generated HTML report. Does nothing if gen-html is not enabled. Default: . (the current working directory).

	
gen-html-title

	Set the title of the generated HTML report. Does nothing if gen-html is not enabled. Default: Hello.

	
gen-html-command-line

	Set additional command line options for the gen html stage. Default: no additional command line options.

	
excludes

	A list of directories and files to excluse from the coverage report. The paths are relative to the current working directory. Default: an empty list.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the lcov example
 build: Build the files
 clean: Clean the build
 run: Run the built binaries

patterns: # Define the patterns that can be used
 MAKE_TARGET: # Define make targets for building
 default-values: # Only define the default value
 - hello
 - world

example:
 - build
 - lcov # Use the lcov plugin when running the 'example' command

build:
 - make

clean:
 - make
 - command-line-command

run:
 command-line-command

lcov: # Configure lcov
 run-command: run # Execute the 'build' command for building, running and analyzing the project
 info-file: build/coverage.info # Create and use the coverage.info file in the build dir
 base-directory: . # LCOV's base-directory functionality
 directory: . # LCOV's directory functionality
 zero-counters: yes # Zero the counters before executing the analysis
 gen-html: yes # Generate a HTML coverage report
 gen-html-output: build/coverage # Output the HTML coverage report to build/coverage
 gen-html-title: "LCOV-example" # Set the title of the HTML coverage report
 excludes: # Set which entries to exclude from the report
 - /usr/include/*

make:
 build:
 patterns:
 - MAKE_TARGET
 command-line:
 - "{MAKE_TARGET}"
 clean:
 command-line:
 - clean

command-line-command:
 patterns:
 - MAKE_TARGET
 run:
 command-line: ["build/{MAKE_TARGET}"]
 clean:
 command-line:
 remote-gcda-file: [rm, -rf, "{MAKE_TARGET}.gcda"]
 remote-gcno-file: [rm, -rf, "{MAKE_TARGET}.gcno"]

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
	rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Make plugin

Description

The make plugin is used for executing Makefiles.

Mandatory settings

There are no mandatory settings for this plugin.

Optional settings

The configuration of the make plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
build-dir

	The path to the Makefile. This is either an absolute path are a path relative to the location of this file. Default: . (the current working directory).

Example

Configuration

commands: # Define the commands that can be run
 example: Run the make example
 clean: Clean the build
 run: Run the files that were built

patterns: # Define the patterns that can be used
 MAKE_TARGET: # Define the EXAMPLE_PATTERN.
 default-values: # Only define the default value
 - hello
 - world

example:
 - clean
 - make # Use the make plugin when running the 'example' command
 - run

clean: # Use the make plugin when running the 'clean' command
 - make

run:
 - command-line-command

make:
 environment: # Define additional environment variables
 WORLD: "world!"
 example: # Specific settings for the 'example' command
 patterns: # The patterns that are used by the make plugins
 - MAKE_TARGET
 build-dir: $(pwd) # Set the build dir
 command-line: # Define additional command line arguments
 - --keep-going # An example argument passed to make
 - "{MAKE_TARGET}" # Define the make target to execute
 clean:
 command-line:
 - clean

command-line-command:
 patterns:
 - MAKE_TARGET
 command-line:
 - build/{MAKE_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
	rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Meson plugin

Description

The meson plugin is used for setting up, compiling, installing and testing software using the Meson build generator system.

Mandatory settings

Mandatory settings for all modes

	
mode

	Set the mode of the Meson call for the specific command. Default: setup.

Supported modes are:

	setup: For setting up the build directory based on the Meson configuration in the source. This is often callend the configure or build init step.

	compile: Compiles (or builds) the generated project

	test: Run the configured test suite using Meson

	install: Install the generated project

Optional settings

The configuration of the meson plugin may contain the following additional settings:

Settings for all modes

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
build-dir

	The path to the build directory. This is either an absolute path are a path relative to the location of this file. Default: . (the directory of the exec-helper configuration).

Additional settings for the setup mode

	
source-dir

	The directory containing the root meson.build file of the sources. Default: . (the directory of the exec-helper configuration).

	
build-type

	Set the Meson build type explicitly. See the --buildtype parameter of meson setup for more information.

	
cross-file

	Set the Meson cross-file. See the --cross-file parameter of meson setup for more information.

	
prefix

	Set the Meson installation prefix. See the --prefix parameter of meson setup for more information.

	
options

	A map of the options to set for setting up the build. See the -D parameter of :code`meson setup` for more information.

Additional settings for the compile mode

	
jobs

	Fix the number of jobs to use. Default: auto or the number of jobs set on the exec-helper invocation.

Additional settings for the test mode

	
suites

	Set the test suites to run. By default, this parameter is omitted.

	
targets

	Set the targets to run. By default, this parameter is omitted.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the meson example
 run: Run the files that were built

patterns: # Define the patterns that can be used
 MESON_TARGET: # Define the MESON_TARGET pattern.
 default-values: # Only define the default value
 - hello
 - world

example:
 - build # Use the meson plugin when running the 'example' command
 - run

build: # Subdivide the 'build' command into three consecutive commands
 - generate
 - build-only
 - install

generate: meson # Define the subcommands. These commands can be called directly to.
build-only: meson
install: meson

run:
 - command-line-command # Use the command-line-command plugin for the 'run' command

meson:
 environment: # Define additional environment variables
 WORLD: "world!"

 prefix: /tmp # Set the installation prefix
 source-dir: . # Set the source dir for all meson targets that do not further specialize this
 build-dir: build # Set the build dir for all meson targets that do not further specialize this

 generate: # Specific settings for the 'generate' command
 mode: setup # Set the mode
 options: # Set some defines
 test: true
 command-line: # Define additional command line arguments
 - --strip # An example argument passed to make

 build-only: # Specific settings for the 'build-only' command
 mode: compile # Set the mode
 jobs: 1 # Always compile with one thread

 install: # Specific settings for the 'install' command
 mode: install # Set the mode

command-line-command:
 run:
 patterns: # The patterns that are used by the 'run' command
 - MESON_TARGET
 command-line:
 - build/{MESON_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

meson.build:

project('example', 'cpp',
 version: '0.1.0',
 default_options: [
 'cpp_std=c++17',
]
)

hello = executable('hello', ['src/hello.cpp'],
 install : true,
)

world = executable('world', ['src/world.cpp'],
 install : true,
)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Ninja plugin

Description

The ninja plugin is used for executing Makefiles.

Mandatory settings

There are no mandatory settings for this plugin.

Optional settings

The configuration of the ninja plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
build-dir

	The path to the build directory. This is either an absolute path are a path relative to the location of this file. Default: . (the current working directory).

Example

Configuration

commands: # Define the commands that can be run
 example: Run the ninja example
 clean: Clean the build
 run: Run the files that were built

patterns: # Define the patterns that can be used
 TARGET: # Define the EXAMPLE_PATTERN.
 default-values: # Only define the default value
 - hello
 - world

example:
 - clean
 - ninja # Use the ninja plugin when running the 'example' command
 - run

clean: # Use the ninja plugin when running the 'clean' command
 - ninja

run:
 - command-line-command

ninja:
 environment: # Define additional environment variables
 WORLD: "world!"
 build-dir: . # Set the build dir
 example: # Specific settings for the 'example' command
 patterns: # The patterns that are used by the ninja plugins
 - TARGET
 command-line: # Define additional command line arguments
 - -k # An example argument passed to ninja
 - 2
 - "{TARGET}" # Define the ninja target to execute
 clean:
 command-line:
 - clean

command-line-command:
 patterns:
 - TARGET
 command-line:
 - build/ninja/{TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

ninja.build:

CXX = g++
CXXFLAGS = -Wall
LDFLAGS =
BUILD_DIR = build/ninja

rule cc
 command = $CXX $CXXFLAGS $LDFLAGS -o $out $in

rule rmdir
 command = rm -rf $dir

build $BUILD_DIR/hello: cc src/hello.cpp
build hello: phony $BUILD_DIR/hello

build $BUILD_DIR/world: cc src/world.cpp
build world: phony $BUILD_DIR/world

build clean: rmdir
 dir = $BUILD_DIR

build all: phony hello world

default all

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Pmd plugin

Description

The pmd plugin is used for executing the pmd static code analyzer tool suite.

Mandatory settings

There are no mandatory settings for this plugin.

Optional settings

The configuration of the pmd plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
exec

	The path to the pmd-run executable. The path can either be an absolute path or a relative path from the current working directory. Default: pmd.

	
tool

	
The pmd tool to use. The currently supported tools are:

	

	cpd

Default: cpd

	
language

	Specify the language PMD is analyzing. Check the --language option of the pmd documentation for more information. Default: no explicit language parameter is passed.

Cpd specific settings

	
minimum-tokens

	The minimum token length to be considered a duplicate. Check the --minimum-tokens option of the cpd documentation for more information. Default: no explicit minimum tokens parameter is passed.

	
files

	A list of files to check for duplicated code. Check the --files option of the cpd documentation for more information. Default: no explicit files parameter is passed.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the pmd example

patterns: # Define the patterns that can be used
 TARGET: # Define targets to check
 default-values: # Only define the default value
 - hello
 - world

example:
 - pmd # Use the cppcheck plugin when running the 'example' command

pmd: # Cppcheck configuration for the 'example' command
 example:
 patterns: # Define the patterns to use
 - TARGET
 exec: pmd
 tool: cpd
 language: cpp
 minimum-tokens: 100
 files: src/{TARGET}.cpp
 command-line: # Set additional arguments
 - --non-recursive

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
	rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Scons plugin

Description

The scons plugin is used for executing scons.

Mandatory settings

There are no mandatory settings for this plugin.

Optional settings

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

	
build-dir

	The path to the build directory. This is either an absolute path are a path relative to the location of this file. Default: . (the current working directory).

Example

Configuration

commands: # Define the commands that can be run
 example: Run the scons example
 clean: Clean all built files
 run: Run the built binaries

patterns: # Define the patterns that can be used
 SCONS_TARGET: # Define the EXAMPLE_PATTERN.
 default-values: # Only define the default value
 - hello
 - world

example:
 - clean
 - scons # Use the command-line-command plugin when running the 'example' command
 - run

clean:
 - command-line-command

run:
 - command-line-command

scons:
 patterns: # The patterns that are used by the make plugins
 - SCONS_TARGET
 example: # Specific settings for the 'example' command
 command-line: # Define additional command line arguments
 - --keep-going # Pass additional options to scons
 - "{SCONS_TARGET}" # Define the make target to execute

command-line-command:
 clean:
 command-line: [rm, -rf, build]
 run:
 patterns:
 - SCONS_TARGET
 command-line: ["build/{SCONS_TARGET}"]

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

SConstruct:

env = Environment()
Export('env')

SConscript('src/SConscript', variant_dir='build', duplicate=0)

Default(None)

SConscript:

Import('env')

hello = env.Program('hello.cpp')
env.Alias('hello', hello)

world = env.Program('world.cpp')
env.Alias('world', world)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Selector plugin

Description
The selector plugin is used for selecting a configuration path based on the value(s) of a target, typically one from a pattern value.

Mandatory settings

The configuration of the command-line-command must contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
targets

	The targets to select on. Note that if patterns are used in this list, they must be listed using the patterns configuration, as is the case for every plugin.

The runtime value(s) associated with the pattern key must resolve either to an existing (configured) plugin or a configured command.

Optional settings

There are no optional settings for the selector plugin.

Example

Configuration

Usage:
'exec-helper --settings-file <this file> example' will execute both the example1 and example2 target.
Adding the --example <example-value> will only execute the given <example-value>. E.g.:
'exec-helper --settings-file <this file> example --example example1' will execute the example1 target only.

commands:
 example: An example for using the selector plugin

patterns:
 SELECTOR: # Define the pattern to select on.
 default-values:
 - example1
 - example2
 short-option: e
 long-option: --example

example: # Use the selector for the example command
 - selector

selector:
 patterns:
 - SELECTOR # Tell the selector plugin to use the SELECTOR pattern for deciding which paths to trigger
 targets: ["{SELECTOR}"] # Execute the target when the selector is activated. The target is a permutation of the values in the registered patterns

example1: # Define the 'example1' path
 - command-line-command

example2: # Define the 'example2' path
 - command-line-command

command-line-command:
 example1:
 command-line: [echo, example1]
 example2:
 command-line: [echo, example2]

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Sh plugin

Description

The sh plugin is used for executing commands in the sh shell, rather than executing the command right away. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.

Mandatory settings

Mandatory settings for all modes

	
command

	Command to execute in the shell, as a string. See the -c option of sh for more information.

Optional settings

The configuration of the sh plugin may contain the following additional settings:

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

Example

Configuration

commands: # Define the commands that can be run
 example: run the sh example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Define the default value
 - world!

example:
 - sh # Use the sh plugin when running the 'example' command

sh: # Sh plugin configuration settings
 example: # Settings specific to the 'example' command
 environment: # Define the environment
 EXAMPLE_ENVIRONMENT: hello
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo "working directory is $(pwd)"' # Define the shell command
 command-line: [-ex] # Pass additional command line arguments
 working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Valgrind plugin

Description

The valgrind plugin is used for executing code coverage analysis using valgrind.

Mandatory settings

The configuration of the valgrind plugin must contain the following settings:

	
run-command

	The exec-helper command or plugin to use for running the binaries which need to be analyzed.

Optional settings

The configuration of the valgrind plugin may contain the following settings:

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
tool

	The valgrind tool to use. Default: the tool is omitted.

Example

Configuration

commands: # Define the commands that can be run
 example: Run the lcov example
 build: Build the files
 clean: Clean the build
 run: Run the built binaries

patterns: # Define the patterns that can be used
 MAKE_TARGET: # Define make targets for building
 default-values: # Only define the default value
 - hello
 - world

example:
 - build
 - valgrind # Use the valgrind plugin when running the 'example' command

build:
 - make

clean:
 - make
 - command-line-command

run:
 command-line-command

valgrind: # Configure the valgrind plugin
 run-command: run # Execute the 'build' command for building, running and analyzing the project
 tool: memcheck # Set the tool
 command-line: # Set additional arguments for valgrind
 - --error-exitcode=255

make:
 build:
 patterns:
 - MAKE_TARGET
 command-line:
 - "{MAKE_TARGET}"
 clean:
 command-line:
 - clean

command-line-command:
 patterns:
 - MAKE_TARGET
 run:
 command-line: ["build/{MAKE_TARGET}"]
 clean:
 command-line:
 remote-gcda-file: [rm, -rf, "{MAKE_TARGET}.gcda"]
 remote-gcno-file: [rm, -rf, "{MAKE_TARGET}.gcno"]

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
	mkdir -p $(BUILD_DIR)
	$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
	rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "Hello" << std::endl;
 return EXIT_SUCCESS;
}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
 std::cout << "World!" << std::endl;
 return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

Zsh plugin

Description

The zsh plugin is used for executing commands in the zsh shell, rather than executing the command right away. This is very useful for executing command lines that need special shell characters like &&, |, ;, >.

Mandatory settings

Mandatory settings for all modes

	
command

	Command to execute in the shell, as a string. See the -c option of zsh for more information.

Optional settings

The configuration of the zsh plugin may contain the following additional settings:

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

Example

Configuration

commands: # Define the commands that can be run
 example: run the zsh example

patterns: # Define the patterns that can be used
 EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.
 default-values: # Define the default value
 - world!

example:
 - zsh # Use the zsh plugin when running the 'example' command

zsh: # Sh plugin configuration settings
 example: # Settings specific to the 'example' command
 environment: # Define the environment
 EXAMPLE_ENVIRONMENT: hello
 patterns: # Define the patterns that are used
 - EXAMPLE_PATTERN
 command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo "working directory is $(pwd)"' # Define the shell command
 command-line: [-ex] # Pass additional command line arguments
 working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

Feature documentation

The following features are currently documented:

	Command line arguments

	Configuration

	Custom modules

	Execution order

	Working directory

Test reports

The Feature test report [https://bverhagen.gitlab.io/exec-helper/integration/report.html] shows the detailed results of the feature scenario’s.

The Unit test coverage report [https://bverhagen.gitlab.io/exec-helper/coverage/index.html] shows the detailed coverage of the unit tests.

Command line arguments

@cmd_args @no_args
Feature: Calling exec-helper without command-line options
 Scenarios for calling exec-helper without command-line options

 Background:
 Given a controlled environment

 @successful
 Scenario: The application is called with no command line arguments and no valid configuration file
 When we call the application
 Then the call should fail with return code 1
 And stderr should contain 'Could not find an exec-helper settings file'

 @successful
 Scenario: The application is called with no command line arguments and a valid configuration file
 Given a valid configuration
 When we call the application
 Then the call should fail with return code 1
 And stderr should contain 'must define at least one command'

@cmd_args @invalid_args
Feature: Call the application with invalid arguments
 Scenarios for when the application is called with invalid command-line arguments

 Examples:
 | command_line |
 | -b |
 | --blaat |
 | -b blaat |
 | --blaat blaat |
 | --blaat blaat --foo bar |

 Background:
 Given a controlled environment

 @error
 Scenario: The version option is defined on a valid command line
 Given a valid configuration
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should fail with return code 1
 And stderr should contain 'unrecognised option'
 And stdout should contain 'Usage'
 And stdout should contain '--help'

 @error
 Scenario: The version option is defined on a valid command line with no configuration file
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should fail with return code 1
 And stderr should contain 'Could not find an exec-helper settings file'
 And stderr should not contain 'unrecognised option'
 And stdout should contain 'Usage'
 And stdout should contain '--help'

@cmd_args @help_option
Feature: Use the help command-line option
 Scenarios for when the help option is given on the command line

 Examples:
 | command_line |
 | -h |
 | --help |
 | --help --version --debug debug |
 | --debug debug --help --version |
 | --version --debug debug --help |

 Background:
 Given a controlled environment

 @successful
 Scenario: The help option is defined on a valid command line
 Given a valid configuration
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'Usage'
 And stdout should contain 'Optional arguments:'
 And stdout should not contain 'Configured commands:'

 @successful
 Scenario: The help option is defined on a valid command line with no configuration file
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...'
 And stdout should contain 'Optional arguments:'
 And stdout should not contain 'Configured commands:'

 @successful
 Scenario: The help option is defined for a configuration with a command
 Given a valid configuration
 And the <command> command
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...'
 And stdout should contain 'Optional arguments:'
 And stdout should contain 'Configured commands:'
 And stdout should contain <command>

 Examples:
 | command |
 | Command1 |

 @successful
 Scenario: The help option is defined for a configuration with a pattern
 Given a valid configuration
 And the <pattern> pattern
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...'
 And stdout should contain 'Optional arguments:'
 And stdout should not contain 'Configured commands:'
 And stdout should contain 'Values for pattern'

 Examples:
 | pattern |
 | { "key": "PATTERN", "long_options": ["blaat"], "default_values": ["blaat"] } |

 @successful
 Scenario: The help option is defined for a configuration with a pattern and a command
 Given a valid configuration
 And the <command> command
 And the <pattern> pattern
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...'
 And stdout should contain 'Optional arguments:'
 And stdout should contain 'Configured commands:'
 And stdout should contain 'Values for pattern'
 And stdout should contain <command>

 Examples:
 | command | pattern |
 | Command1 | { "key": "PATTERN", "long_options": ["blaat"], "default_values": ["blaat"] } |

@cmd_args @version_option
Feature: Use the version command-line option
 Scenarios for when the version option is given on the command line

 Examples:
 | command_line |
 | --version |
 | --version --debug debug --dry-run |
 | --debug debug --version --dry-run |
 | --dry-run --debug debug --version |

 Background:
 Given a controlled environment

 @successful
 Scenario: The version option is defined on a valid command line
 Given a valid configuration
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'exec-helper'
 And stdout should contain 'COPYRIGHT'

 @successful
 Scenario: The version option is defined on a valid command line with no configuration file
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'exec-helper'
 And stdout should contain 'COPYRIGHT'

@cmd_args @dry_run_option
Feature: Use the dry run command-line option
 Scenarios for when the dry run option is given on the command line

 Examples:
 | command_line |
 | -n |
 | --dry-run |
 | --dry-run --debug debug --verbose |
 | --debug debug --dry-run --verbose |
 | --verbose --debug debug --dry-run |

 Background:
 Given a controlled environment

 @successful
 Scenario: The keep-going option is defined on a valid command line
 Given a valid configuration
 When we add the <command> command
 And we add the <command_line> as command line arguments
 And we add the <command> to the command line options
 When we call the application
 Then the call should succeed
 And the <command> command should be called 0 times

 Examples:
 | command |
 | describe |

@cmd_args @keep_going_option
Feature: Use the keep-going command-line option
 Scenarios for when the keep-going option is given on the command line

 Examples:
 | command_line |
 | -k |
 | --keep-going |
 | --keep-going --debug debug --verbose |
 | --debug debug --keep-going --verbose |
 | --verbose --debug debug --keep-going |

 Background:
 Given a controlled environment

 @successful
 Scenario: The keep-going option is defined on a valid command line
 Given a valid configuration
 When we add the <command> that returns <return_code>
 And we add the <command_line> as command line arguments
 And we add the <command> <nb_of_times> to the command line options
 When we call the application
 Then the call should fail with return code <return_code>
 And the <command> command should be called <nb_of_times> times

 Examples:
 | command | return_code | nb_of_times |
 | fail | 0 | 1 |
 | fail | 0 | 3 |
 | fail | 1 | 1 |
 | fail | 1 | 4 |

@cmd_args @list_plugins_option
Feature: Use the 'list plugins' command-line option
 Scenarios for when the 'list plugins' option is given on the command line

 Examples:
 | command_line |
 | --list-plugins |
 | --list-plugins --debug debug --dry-run |
 | --dry-run --list-plugins --debug debug |
 | --debug debug --dry-run --list-plugins |

 Background:
 Given a controlled environment

 @successful
 Scenario: The 'list plugins' option is defined on a valid command line
 Given a valid configuration
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'command-line-command'

 @successful
 Scenario: The 'list plugins' option is defined on a valid command line with no configuration file
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain 'command-line-command'

Configuration

Usage information on the configuration can be found on the Configuration page.

@config @environment
Feature: Test settings the environment for the configured commands
 Scenarios for setting the environment for configured command(s)

 Background:
 Given a controlled environment
 And a valid configuration

 @successful
 Scenario: Set the environment to a fixed value
 Given the <command> command
 And the <environment> is configured for <command> command in the configuration
 When we run the <command> command
 Then the call should succeed
 And the runtime environment for <command> should contain the given <environment>

 Examples:
 | command | environment |
 | Command1 | KEY1:VALUE1 |
 | Command2 | KEY1:VALUE1;KEY2:VALUE2;KEY3:VALUE3 |

 @successful
 Scenario: Replace patterns in the configured environment
 Given the <command> command
 And the <pattern> pattern
 And the <pattern> is configured for <command> command in the configuration
 And the <environment> is configured for <command> command in the configuration
 When we run the <command> command
 Then the call should succeed
 And the runtime environment for <command> should contain the given <environment>

 Examples:
 | command | pattern | environment |
 | Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | KEY:{PATTERN} |
 | Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | {PATTERN}:VALUE |
 | Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | {PATTERN}:{PATTERN} |
 | Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | this-{PATTERN}-key:this-{PATTERN}-value |
 | Command1 | { "key": "SPA CE", "default_values": ["bla a at"] } | {SPA CE}:{SPA CE} |

Custom modules

@cmd_args @custom_plugins @custom_plugins_discovery
Feature: Discover custom plugins
 Scenarios for discovering custom plugins at runtime

 Examples:
 | command_line |
 | --list-plugins |

 Background:
 Given a controlled environment
 And a valid configuration
 And a random custom plugin directory

 @successful
 Scenario: Discover the system modules
 When we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description |
 | bootstrap | Lua plugin for module \S*/plugins/bootstrap.lua |
 | clang-static-analyzer | Lua plugin for module \S*/plugins/clang-static-analyzer.lua|
 | clang-tidy | Lua plugin for module \S*/plugins/clang-tidy.lua |
 | cmake | Lua plugin for module \S*/plugins/cmake.lua |
 | command-line-command | Command-line-command \(internal\) |
 | cppcheck | Lua plugin for module \S*/plugins/cppcheck.lua |
 | docker | Lua plugin for module \S*/plugins/docker.lua |
 | lcov | Lua plugin for module \S*/plugins/lcov.lua |
 | make | Lua plugin for module \S*/plugins/make.lua |
 | ninja | Lua plugin for module \S*/plugins/ninja.lua |
 | pmd | Lua plugin for module \S*/plugins/pmd.lua |
 | scons | Lua plugin for module \S*/plugins/scons.lua |
 | selector | Lua plugin for module \S*/plugins/selector.lua |
 | valgrind | Lua plugin for module \S*/plugins/valgrind.lua |

 @error
 Scenario: Fail to find a custom module when the search path is not set properly
 Given a custom module with id <plugin_id>
 When we register the command <command> to use the module <plugin_id>
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should not contain <plugin_id>

 Examples:
 | plugin_id | command |
 | exec-helper-custom-module | Command1 |

 @successful
 Scenario: Discover a custom module by setting the search path in the configuration
 Given a custom module with id <plugin_id>
 When we register the command <command> to use the module <plugin_id>
 And add the search path to the configuration
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description | command |
 | exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/exec-helper-custom-module.lua | Command1 |

 @successful
 Scenario: The search custom plugin configuration takes precedence over the system modules
 Given a custom module with id <plugin_id>
 When we register the command <command> to use the module <plugin_id>
 And add the search path to the configuration
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description | command |
 | make | Lua plugin for module \S*/custom-plugins/make.lua | Command1 |
 | command-line-command | Lua plugin for module \S*/custom-plugins/command-line-command.lua | Command1 |

 @successful
 Scenario: Discover a custom module by setting the search path on the command line
 Given a custom module with id <plugin_id>
 When we register the command <command> to use the module <plugin_id>
 And add the search path to the command line
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description | command |
 | exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/exec-helper-custom-module.lua | Command1 |

 @successful
 Scenario: The search custom plugin command line takes precedence over the system modules
 Given a custom module with id <plugin_id>
 When we register the command <command> to use the module <plugin_id>
 And add the search path to the command line
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description | command |
 | make | Lua plugin for module \S*/custom-plugins/make.lua | Command1 |
 | command-line-command | Lua plugin for module \S*/custom-plugins/command-line-command.lua | Command1 |

 @successful
 Scenario: The search custom plugin command line parameter takes precedence over the one(s) in the configuration
 Given a custom module with id <plugin_id>
 And the same custom module <plugin_id> on a different location and add it to the command line search path
 When we register the command <command> to use the module <plugin_id>
 And add the search path to the configuration
 And we add the <command_line> as command line arguments
 And we call the application
 Then the call should succeed
 And stdout should contain <plugin_id>
 And stdout should contain regex <description>

 Examples:
 | plugin_id | description | command |
 | exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/other/exec-helper-custom-module.lua | Command1 |

@custom_plugins @custom_plugins_usage
Feature: Using custom plugins
 Scenarios for using custom plugins

 Examples:
 | plugin_id | command |
 | exec-helper-custom-module | Command1 |
 | make | Command2 |

 Background:
 Given a controlled environment
 And a valid configuration
 And a random custom plugin directory
 And a custom module with id <plugin_id>
 And a registered command <command> that uses the module <plugin_id>
 And the custom plugin search path is registered in the configuration

 @successful
 Scenario: Check that the custom plugin is called
 When run the <command> command <nb_of_times> in the same statement
 Then the call should succeed
 And the <command> command should be called <nb_of_times> times
 And stderr should be empty

 Examples:
 | nb_of_times |
 | 1 |
 | 10 |

Execution order

@execution_order
Feature: Execution order
 The order of execution must be as defined by the exec-helper configuration and specification

 Background:
 Given a controlled environment
 And a valid configuration

 @successful
 Scenario: Run a command with one associated command line a number of times
 When we add the <command> command
 And run the <command> command <nb_of_times> in the same statement
 Then the call should succeed
 And the <command> command should be called <nb_of_times> times
 And stderr should be empty

 Examples:
 | command | nb_of_times |
 | some-command | 1 |
 | other-command | 10 |

Working directory

@working_dir @settings_file_location
Feature: All paths in a configuration file are relative to the location of the settings file
 Scenarios for checking all paths relative to the settings file

 Examples:
 | command |
 | Command1 |

 Background:
 Given a controlled environment
 And a valid configuration
 And the <command> command

 @successful
 Scenario: The default working directory is the location of the settings file
 Given a current working directory of <start_working_dir>
 When we run the <command> command
 Then the call should succeed
 And the working directory should be the environment root dir
 And the PWD environment variable should be the environment root dir

 Examples:
 | start_working_dir |
 | /tmp |
 | . |
 | ./blaat |
 | ./a/b/c/d |
 | ~ |
 | /tmp/blaat/ |

Index

 Symbols
 | E

Symbols

 	
 	
 -h, --help

 	exec-helper command line option

 	
 -j, --jobs[=JOBS]

 	exec-helper command line option

 	
 -k, --keep-going

 	exec-helper command line option

 	
 -n, --dry-run

 	exec-helper command line option

 	
 	
 -s, --settings-file[=FILE]

 	exec-helper command line option

 	
 -v, --verbose

 	exec-helper command line option

 	
 -z, --command=COMMAND

 	exec-helper command line option

E

 	
 	
 exec-helper command line option

 	-h, --help

 	-j, --jobs[=JOBS]

 	-k, --keep-going

 	-n, --dry-run

 	-s, --settings-file[=FILE]

 	-v, --verbose

 	-z, --command=COMMAND

	
command-line

	Additional command line parameters to pass as a list of separate arguments. By default no additional arguments are added.

	
enviroment

	A list of environment variables that should be set before the commands are executed. See Environment (5).

	
patterns

	A list of patterns to apply on the command line. See Patterns (5).

See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

	
working-dir

	The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the considered configuration file. Commands that should be executed relative to the current working dir can use the {EH_WORKING_DIR} pattern.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to exec-helper’s documentation!

 		
 Welcome

 		
 Installation instructions

 		
 Command-line usage

 		
 Configuration

 		
 Plugins

 		
 Feature documentation

 		
 Command line arguments

 		
 Configuration

 		
 Custom modules

 		
 Execution order

 		
 Working directory

_static/up-pressed.png

_static/up.png

