
Exec-helper
Release 0.5.0

Sep 18, 2022

Contents:

1 Exec-helper 1
1.1 What . 1
1.2 Why . 1
1.3 Simple example . 2
1.4 Installation . 4
1.5 Documentation . 4
1.6 Code quality . 4

2 Installation instructions 7
2.1 Installing from package . 7
2.2 Building from source . 8
2.3 Cross compilation . 10

3 exec-helper 11
3.1 Synopsis . 11
3.2 Description . 11
3.3 Options . 11
3.4 Configured options . 12
3.5 Exit status . 12
3.6 Auto-completion . 12
3.7 See also . 12

4 Configuration 13
4.1 Environment . 13
4.2 Patterns . 15
4.3 Description . 17
4.4 Mandatory keys . 17
4.5 Optional keys . 17
4.6 Working directory . 18
4.7 Paths . 18
4.8 Example configuration . 18
4.9 See also . 20

5 Plugins 21
5.1 Custom plugins . 21
5.2 Bash plugin . 26
5.3 Bootstrap plugin . 27

i

5.4 Clang-static-analyzer plugin . 28
5.5 Clang-tidy plugin . 31
5.6 CMake plugin . 33
5.7 Command-line-command plugin . 37
5.8 Cppcheck plugin . 38
5.9 Docker plugin . 40
5.10 Execute plugin . 43
5.11 Fish plugin . 44
5.12 Lcov plugin . 45
5.13 Make plugin . 49
5.14 Meson plugin . 51
5.15 Ninja plugin . 55
5.16 Pmd plugin . 58
5.17 Scons plugin . 60
5.18 Selector plugin . 63
5.19 Sh plugin . 64
5.20 Valgrind plugin . 66
5.21 Zsh plugin . 68
5.22 Description . 70
5.23 General plugins . 70
5.24 Build plugins . 71
5.25 Analysis plugins . 71
5.26 Custom plugins . 71
5.27 See also . 71

6 Feature documentation 73
6.1 Command line arguments . 73
6.2 Configuration . 78
6.3 Custom modules . 79
6.4 Execution order . 82
6.5 Working directory . 83
6.6 Test reports . 83

7 Indices and tables 85

Index 87

ii

CHAPTER 1

Exec-helper

Or How To Get Your Coffee In Peace.

1.1 What

Exec-helper is a meta-wrapper for executing tasks on the command line.

1.2 Why

Exec-helper improves the main bottleneck in your development workflow: you.

It does this by:

• Reducing the number of keystrokes required to execute the same command over and over again

• Chaining multiple commands

All without sacrificing (much) flexibility or repeating useless work.

If this, together with getting coffee in peace is not a sufficient rationale for you, the main advantages of exec-helper
over (simple) scripts or plain command line commands are:

• Easy permutation of multiple execution parameters (so-called patterns in exec-helper).

• Easy selection of a subset of execution parameters.

• Improved DRY: execution parameters are only changed on one spot, in stead of everywhere in your command
line.

• Technology-agnostic approach: e.g. running the exec-helper build can build a C++ project in one directory
structure and a JAVA project in another.

• Enables a self-documented workflow.

1

https://exec-helper.readthedocs.io
https://gitlab.com/bverhagen/exec-helper/commits/master
https://www.codacy.com/gl/exec-helper/source/dashboard?utm_source=gitlab.com&utm_medium=referral&utm_content=exec-helper/source&utm_campaign=Badge_Coverage
https://www.codacy.com/gl/exec-helper/source/dashboard?utm_source=gitlab.com&utm_medium=referral&utm_content=exec-helper/source&utm_campaign=Badge_Grade

Exec-helper, Release 0.5.0

• Out of the box support for multi-valued options and default values.

• Searches for a suitable configuration in its parent folders.

• Fast to type using the eh alias

• Easy to find and/or list available commands using the –help option.

• Easy extensible with your own, first-class citizen, plugins.

• Automatic autocompletion of commands and patterns

1.3 Simple example

This is a simple illustration of the concept behind exec-helper. More extensive information and examples can be found
in the .exec-helper configuration file for this repository and in the documentation.

1.3.1 Use case

Build a C++ project using g++ and clang++ using cmake in a Debug and RelWithDebInfo configuration

1.3.2 Configuration file

Copy the following to a file named ‘.exec-helper’:

commands:
init: Initialize build
build: Build-only + install
build-only: Build
install: Install

patterns:
COMPILER:

default-values:
- g++
- clang++

short-option: c
long-option: compiler

MODE:
default-values:

- debug
- release

short-option: m
long-option: mode

build:
- build-only
- install

init:
- command-line-command

build-only:
- make

(continues on next page)

2 Chapter 1. Exec-helper

http://exec-helper.readthedocs.io

Exec-helper, Release 0.5.0

(continued from previous page)

install:
- make

command-line-command:
init:

patterns:
- COMPILER
- MODE

command-line: [cmake, -H., "-Bbuild/{COMPILER}/{MODE}", "-DCMAKE_CXX_
→˓COMPILER={COMPILER}", "-DCMAKE_INSTALL_PREFIX=install/{COMPILER}/{MODE}", "-DCMAKE_
→˓BUILD_TYPE={MODE}"]

make:
patterns:

- COMPILER
- MODE

build-dir: "build/{COMPILER}/{MODE}"
install:

command-line: install

1.3.3 Example output

$ exec-helper --help
-h [--help] Produce help message
--version Print the version of this binary
-v [--verbose] Set verbosity
-j [--jobs] arg Set number of jobs to use. Default: auto
-n [--dry-run] Dry run exec-helper
-s [--settings-file] arg Set the settings file
-d [--debug] arg Set the log level
-z [--command] arg Commands to execute
-c [--compiler] arg Values for pattern 'compiler'
-m [--mode] arg Values for pattern 'mode'

Configured commands:
init Initialize build
build Build-only + install
build-only Build
install Install

$ exec-helper init build # Permutate all combinations of the default values
Executing "cmake -H. -Bbuild/g++/debug -DCMAKE_CXX_COMPILER=g++ -DCMAKE_INSTALL_
→˓PREFIX=install/g++/debug -DCMAKE_BUILD_TYPE=debug"
Executing "cmake -H. -Bbuild/g++/release -DCMAKE_CXX_COMPILER=g++ -DCMAKE_INSTALL_
→˓PREFIX=install/g++/release -DCMAKE_BUILD_TYPE=release"
Executing "cmake -H. -Bbuild/clang++/debug -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_
→˓INSTALL_PREFIX=install/clang++/debug -DCMAKE_BUILD_TYPE=debug"
Executing "cmake -H. -Bbuild/clang++/release -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_
→˓INSTALL_PREFIX=install/clang++/release -DCMAKE_BUILD_TYPE=release"
Executing "make --directory build/g++/debug --jobs 8"
Executing "make --directory build/g++/release --jobs 8"
Executing "make --directory build/clang++/debug --jobs 8"
Executing "make --directory build/clang++/release --jobs 8"
Executing "make --directory build/g++/debug --jobs 8 install"

(continues on next page)

1.3. Simple example 3

Exec-helper, Release 0.5.0

(continued from previous page)

Executing "make --directory build/g++/release --jobs 8 install"
Executing "make --directory build/clang++/debug --jobs 8 install"
Executing "make --directory build/clang++/release --jobs 8 install"

$ exec-helper build-only --compiler g++ --mode release # Only build the g++
→˓build in release mode
Executing make --directory build/g++/release --jobs 8

$ exec-helper install --compiler g++ --mode debug RelWithDebInfo # Install a
→˓subset - even using ones not listed in the default values
Executing make --directory build/g++/debug --jobs 8 install
Executing make --directory build/g++/RelWithDebInfo --jobs 8 install

1.4 Installation

See INSTALL for more information on:

• Using one of the available packages or installers

• (Cross-)build from source

1.5 Documentation

See documentation for the latest documentation.

1.5.1 Usage

see exec-helper for usage information.

1.5.2 Configuration

See exec-helper-config for information on the configuration file format.

1.5.3 Available plugins

See exec-helper-plugins for a list of all available plugins.

1.5.4 Writing custom plugins

See exec-helper-custom-plugins for a guide on writing your own plugins.

1.6 Code quality

The source code of this project is continuously analyzed by multiple tools in an attempt to catch and fix issues and
bugs as quickly as possible. Released versions should have passed the analysis from the following tools:

4 Chapter 1. Exec-helper

https://exec-helper.readthedocs.io/en/master/INSTALL.html
http://exec-helper.readthedocs.io
https://exec-helper.readthedocs.io/en/master/src/applications/exec-helper.html
https://exec-helper.readthedocs.io/en/master/src/config/docs/exec-helper-config.html
https://exec-helper.readthedocs.io/en/master/src/plugins/docs/exec-helper-plugins.html
https://exec-helper.readthedocs.io/en/master/src/plugins/docs/exec-helper-custom-plugins.html

Exec-helper, Release 0.5.0

• AddressSanitizer (ASan)

• clang-format

• clang-static-analyzer

• clang-tidy

• cppcheck

• License Scanning (by Gitlab)

• pmd (cpd)

• Static Application Security Testing (SAST by Gitlab)

• Valgrind (memcheck)

• UndefinedBehaviorSanitizer (UBSan)

Check the .exec-helper file for detailed information about how these analysis methods are configured and used. The
analysis tools can be executed locally using exec-helper with this project.

1.6. Code quality 5

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang-analyzer.llvm.org
http://clang.llvm.org/extra/clang-tidy
http://cppcheck.sourceforge.net
https://pmd.github.io
https://docs.gitlab.com/ee/user/application_security/sast
http://valgrind.org
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Exec-helper, Release 0.5.0

6 Chapter 1. Exec-helper

CHAPTER 2

Installation instructions

2.1 Installing from package

2.1.1 Arch Linux based distributions

Arch linux users can:

*. Use the pre-built Arch Linux pre-built binary package: Add to /etc/pacman.conf :

[home_bverhagen_exec-helper_Arch]
SigLevel = Optional TrustAll
Server = https://download.opensuse.org/repositories/home:/bverhagen:/exec-helper/
→˓Arch/x86_64/

Then:

curl -L -O https://download.opensuse.org/repositories/home:/bverhagen:/exec-
→˓helper/Arch/x86_64/home_bverhagen_exec-helper_Arch.key
sudo pacman-key --add home_bverhagen_exec-helper_Arch.key
sudo pacman-key --lsign-key C6DA27F1EB5EE305

*. Use the exec-helper (AUR) package *. Check out the exec-helper-package project for building the package from
source. See the Building from source section.

2.1.2 Ubuntu

note: The support of non-LTS versions is rather limited. You are welcome to contribute if one is missing!

Ubuntu users (Bionic and later) can:

*. Add the PPA on Launchpad to your sources *. Check out the exec-helper-package project for building the package
from source. See the Building from source section.

7

https://aur.archlinux.org/packages/exec-helper
https://github.com/bverhagen/exec-helper-package
https://launchpad.net/~bverhagen/+archive/ubuntu/exec-helper
https://github.com/bverhagen/exec-helper-package

Exec-helper, Release 0.5.0

2.1.3 openSUSE

note: Tumbleweed an Leap 15.4 and later are supported.

openSUSE users can:

*. Check out the binaries from the home:bverhagen:exec-helper project on OBS *. Check out the exec-helper-package
project for building the package from source. See the Building from source section.

2.1.4 Other distributions

Checkout the Building from source section.

2.2 Building from source

2.2.1 Requirements

Build tools

• A C++ 17 compatible compiler. Tested with: gcc, clang and MSVC 2017 (14.1)

• meson

• ninja

• make for the quick install

• Sphinx for generating man-pages and general documentation

• Doxygen (1.8.15 or newer) for building API documentation (optional)

• gitchangelog for building the changelog (optional)

Build dependencies

• POSIX compliant operating system

• boost-program-options (1.64 or newer) development files

• boost-log (1.64 or newer) development files

• yaml-cpp (0.5.3 or newer) development files (optional, will be downloaded and compiled in statically if missing)

• lua (5.3 or newer) development files (optional, will be downloaded and compiled in statically if missing)

• readline development files (*NIX systems): required if not using the system Lua.

2.2.2 Quick installation

$ make
$ sudo make install

Use

$ make help

8 Chapter 2. Installation instructions

https://build.opensuse.org/project/show/home:bverhagen:exec-helper
https://github.com/bverhagen/exec-helper-package
https://github.com/boostorg/program_options
https://github.com/boostorg/log
https://github.com/jbeder/yaml-cpp
https://www.lua.org/
https://tiswww.case.edu/php/chet/readline/rltop.html

Exec-helper, Release 0.5.0

for an overview of the available quick installation targets and for an overview of the (very limited) available configu-
ration options.

2.2.3 Advanced installation

CMake is the build system. The Makefile mentioned in the quick installation is a simple wrapper around a more
complex - and more configurable - CMake invocation.

It has the following project-specific configuration options:

USE_SYSTEM_YAML_CPP
Use the yaml-cpp library installed on the system. If switched off, the library will be automatically installed
locally during the build. Default: auto

USE_SYSTEM_LUAJIT
Use the luaJIT library installed on the system. If switched off, the library will be automatically installed locally
during the build. Default: auto

POSITION_INDEPENDENT_CODE
Build using position independent code. Default: ON

ENABLE_TESTING
Enable building the testing infrastructure. Default: ON

BUILD_MAN_DOCUMENTATION
Generate the man-pages for this project

BUILD_HTML_DOCUMENTATION
Generate the HTML documentation for this project

BUILD_XML_DOCUMENTATION
Generate the XML documentation for this project

2.2.4 Build tests

Testing is enabled by setting the CMake configuration option ENABLE_TESTING to ON.

The tests require, in addition to all dependencies above, the following dependencies:

• Catch2 unittest framework development files (optional, for building the tests)

• Rapidcheck property based unittest framework development files (optional, for building the tests)

Testing related configuration options:

ENABLE_WERROR
Enable warning as error during compilation (only supported for GCC and clang)

LIMITED_OPTIMIZATION
Build with limited optimization (typically -O1, only supported for GCC and clang). This is typically used for
running tools like valgrind.

TERMINATE_ON_ASSERT_FAILURE
Explicitly terminate when an assert fires.

USE_SYSTEM_CATCH
Use the Catch2 library installed on the system. If switched off, the library will be automatically installed locally
during the build. Default: auto

2.2. Building from source 9

https://github.com/jbeder/yaml-cpp
https://luajit.org/
https://cmake.org/cmake/help/latest/variable/CMAKE_POSITION_INDEPENDENT_CODE.html
https://github.com/catchorg/Catch2
https://github.com/emil-e/rapidcheck
https://github.com/catchorg/Catch2

Exec-helper, Release 0.5.0

USE_SYSTEM_RAPIDCHECK
Use the Rapidcheck library installed on the system. If switched off, the library will be automatically installed
locally during the build. Default: auto

2.3 Cross compilation

Exec-helper supports both native and cross compilation (including building with a custom sysroot) builds. Cross
compilation requires invoking cmake directly and appending -DCMAKE_TOOLCHAIN_FILE=<toolchain-file>
to the cmake initialization command. Check the toolchain.cmake.in file for a template on setting up the toolchain file
for cross compilation and the Makefile for a template of the cmake initialization command.

10 Chapter 2. Installation instructions

https://github.com/emil-e/rapidcheck

CHAPTER 3

exec-helper

3.1 Synopsis

exec-helper <commands> [options]

eh <commands> [options]

3.2 Description

The exec-helper utility is a meta-wrapper for executables, optimizing one of the slowest links in most workflows:
you. It enables the user to optimize the existing workflow in multiple minor and major ways:

• It minimizes the amount of typing while eliminating redundancies

• It chains multiple commands, inserting patterns at specified places

• It avoids having to memorize or search for the right invocations for more complicated commands

• It allows to write your system- and project-specific plugins for more advanced optimizations

These optimizations enable efficient users to do what they like to do the most: hang around the coffee machine with
peace of mind.

3.3 Options

Mandatory arguments to long options are mandatory for short options too. Arguments to options can be specified by
appending the option with ‘=ARG’ or ‘ ARG’. This manual will further use the ‘=ARG’ notation. Multiple arguments
can be specified, if appropriate and without the need to repeat the option, by using spaces in between the arguments.

-h, --help
Display a usage message on standard output and exit successfully.

11

Exec-helper, Release 0.5.0

-v, --verbose
Enable the verbose flag for the command if available.

-z, --command=COMMAND
Execute one or more configured COMMANDs. This is an alias for the <commands> mandatory option above.

-s, --settings-file[=FILE]
Use FILE as the settings file for the exec-helper configuration. Default: .exec-helper. Exec-helper will use
the first file it finds with the given FILE name. It will search in order in the following locations:

1. The current working directory

2. The parent directories of the working directory. The parent directories are searched in reversed order,
meaning that the direct parent of the current working directory is searched first, next the direct parent of
the direct parent of the current working directory and so-forth until the root directory is reached.

3. The HOME directory of the caller.

-j, --jobs[=JOBS]
Use the specified number of JOBS for each task (if supported). Use auto to let exec-helper determine an
appropriate number. Use a value of 1 for running jobs single-threaded. Default: auto.

-n, --dry-run
Print the commands that would be executed, but do not execute them.

-k, --keep-going
Execute all scheduled commands, even if one or more of them fail.

3.4 Configured options

Additional command-line options for exec-helper can be configured in the settings file. Refer to the
exec-helper-config(5) documentation for more information.

3.5 Exit status

When exec-helper is called improperly or its plugins are invoked improperly, exec-helper will exit with a
status of one. In other cases, it exits with the same status as the last failed command or zero if all commands are
executed successfully.

3.6 Auto-completion

Auto-completions are available for the Bash and Zsh shell. Package maintainers receive the tools to automatically
enable these completions. If your installation package does not do this, you can enable them yourself by adding
source <install-directory>/share/exec-helper/completions/init-completion.sh to your profile or bashrc.

3.7 See also

See Configuration (5) for information about the configuration file.

See Plugins (5) for the available plugins and their configuration options.

12 Chapter 3. exec-helper

CHAPTER 4

Configuration

4.1 Environment

4.1.1 Description

Environment variables can be configured in the configuration file. They will only be set for the particular command(s)
defined by the relevant section of the configuration.

Environment variables can not be set directly in a command line command. The environment configuration key
needs to be used for this. See section ‘environment’.

4.1.2 Environment

The environment keyword can be set for every plugin that supports the env configuration setting. Check the
documentation on a specific plugin to check whether the plugin supports this configuration setting.

The environment keyword must contain a map of key-value pairs, where the key is the name of the environment
variable and the value is the value associated with the specified environment variable. Patterns can be used for the
environment these variable values too.

Note: The PWD environment variable, following POSIX convention, is set by the application to the working directory
of the task. Therefore, its value cannot be overriden in the configuration.

4.1.3 Example configuration

commands: # The mandatory commands key
build: Build the project # A map of command keys with their explanation
clean: Clean the project
rebuild: Build + clean

patterns: # Declare the patterns for this configuration file

(continues on next page)

13

Exec-helper, Release 0.5.0

(continued from previous page)

COMPILER: # Declare the COMPILER pattern
default-values: # Default values to use for the pattern

- g++
- clang++

short-option: c # Declare values for this pattern by using the -c
→˓[VALUES] option when calling exec-helper

long-option: compiler # Declare values for this pattern by using the --
→˓compiler [VALUES] option when calling exec-helper

MODE: # Declare the MODE pattern
default-values:

- debug
- release

short-option: m
long-option: mode

additional-search-paths:
- /tmp

Define the commands listed under 'commands'
build:

- command-line-command # Use the command-line-command plugin when using the
→˓'build' command

clean:
- command-line-command # Use the command-line-command plugin when using the

→˓'clean' command

rebuild:
- clean # Call the 'clean' command when calling the 'rebuild'

→˓command
- build # Call the 'build' command when calling the 'rebuild'

→˓command

command-line-command: # Configure the command-line-command
patterns: # Define the default patterns to use

- COMPILER
- MODE

command-line: # Configure the execution when the specific command
→˓is not listed. Will be executed from the directory of this configuration file

- echo
- building
- using
- "{COMPILER}" # This value will be replaced by the COMPILER pattern

→˓value
- in
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- mode.
- wd=$(pwd) # This command will be executed in a subshell and

→˓replaced by its value before the actual command is executed

clean: # Configure the execution of the build command
patterns: # Overwrite the parent patterns

- MODE
- EH_WORKING_DIR # Use the EH_WORKING_DIR pattern

command-line:
(continues on next page)

14 Chapter 4. Configuration

Exec-helper, Release 0.5.0

(continued from previous page)

- echo
- cleaning
- mode.
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- wd=$(pwd)

working-dir: "{EH_WORKING_DIR}" # The command will be executed from the
→˓current working directory rather than from the directory of this configuration file

4.1.4 See also

See Configuration (5) for information about the configuration file.

4.2 Patterns

4.2.1 Description

Patterns are parts of the configuration that will be replaced by its value when evaluated by exec-helper. The
patterns keyword describes a list of patterns identified by their key. See the ‘patterns’ section for more information
about how to define a pattern.

Patterns can be used to:

• add options to the exec-helper command line

• centralize a value in a variable

• allow iterating over multiple configurations

• control the configurations to iterate over

4.2.2 Patterns

A pattern can contain the following fields:

default-values
A list of default values to use when no values have been defined.

short-option
The short option on the command line associated with this pattern

long-option
The long option on the command line associated with this pattern

4.2.3 Predefined patterns

Exec-helper predefines some specific patterns for convenience:

• EH_ROOT_DIR: contains the absolute path to the directory where the exec-helper configuration is lo-
cated. Useful for converting relative paths to absolute paths for tools that require it (e.g. when setting your
PATH)

• EH_WORKING_DIR: contains the working directory from where the exec-helper executable is called.

4.2. Patterns 15

Exec-helper, Release 0.5.0

4.2.4 Example configuration

commands: # The mandatory commands key
build: Build the project # A map of command keys with their explanation
clean: Clean the project
rebuild: Build + clean

patterns: # Declare the patterns for this configuration file
COMPILER: # Declare the COMPILER pattern

default-values: # Default values to use for the pattern
- g++
- clang++

short-option: c # Declare values for this pattern by using the -c
→˓[VALUES] option when calling exec-helper

long-option: compiler # Declare values for this pattern by using the --
→˓compiler [VALUES] option when calling exec-helper

MODE: # Declare the MODE pattern
default-values:

- debug
- release

short-option: m
long-option: mode

additional-search-paths:
- /tmp

Define the commands listed under 'commands'
build:

- command-line-command # Use the command-line-command plugin when using the
→˓'build' command

clean:
- command-line-command # Use the command-line-command plugin when using the

→˓'clean' command

rebuild:
- clean # Call the 'clean' command when calling the 'rebuild'

→˓command
- build # Call the 'build' command when calling the 'rebuild'

→˓command

command-line-command: # Configure the command-line-command
patterns: # Define the default patterns to use

- COMPILER
- MODE

command-line: # Configure the execution when the specific command
→˓is not listed. Will be executed from the directory of this configuration file

- echo
- building
- using
- "{COMPILER}" # This value will be replaced by the COMPILER pattern

→˓value
- in
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- mode.

(continues on next page)

16 Chapter 4. Configuration

Exec-helper, Release 0.5.0

(continued from previous page)

- wd=$(pwd) # This command will be executed in a subshell and
→˓replaced by its value before the actual command is executed

clean: # Configure the execution of the build command
patterns: # Overwrite the parent patterns

- MODE
- EH_WORKING_DIR # Use the EH_WORKING_DIR pattern

command-line:
- echo
- cleaning
- mode.
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- wd=$(pwd)

working-dir: "{EH_WORKING_DIR}" # The command will be executed from the
→˓current working directory rather than from the directory of this configuration file

4.2.5 See also

See Configuration (5) for information about the configuration file.

4.3 Description

Exec-helper configuration files are written in the YAML 1.2 specification.

4.4 Mandatory keys

A valid configuration file must contain at least the following keys on the root level of the configuration file:

commands

The commands that are configured in the configuration file. It will either contain a list of commands or a list of the
commands as keys with an explanation of the command as a value. These formats can not be used interchangeably.

<command-keys>

For every command defined under the commands key, the configuration must define this command as a key in the root
of the configuration file. The value of the key must either be a registered plugin or another command.

<plugin-keys>

For at least every plugin that is used by a command key, configure the specifics of the plugin (if applicable).

4.5 Optional keys

Optionally the configuration file contains the following keys on the root level of the configuration file:

patterns
Patterns are parts of the configuration that will be replaced by its value when evaluated by exec-helper. The
patterns keyword describes a list of patterns identified by their key. See the @ref exec-helper-config-patterns
for more information about how to define a pattern.

4.3. Description 17

Exec-helper, Release 0.5.0

additional-search-paths
An ordered list of additional search paths to use when searching for plugins. The search paths can be absolute
or relative w.r.t. the parent path of the settings file in which these paths are defined.

Defining search paths is useful for extending exec-helper with your own custom plugins or for overwriting
or extending the functionality in the provided plugins. See [exec-helper-custom-plugins](@ref exec-helper-
custom-plugins)(5) for more information on writing a custom plugin.

The paths defined in this list take precedence over the system search paths for modules with the same name. A
higher position in this list implicates higher precedence.

4.6 Working directory

Configured commands are executed from the so-called working directory. Executing commands in a different working
directory will not affect your current working directory (e.g. when executing from a shell). Each separately configured
command can be executed in a separate working directory.

The working directory is the directory that is associated with the first of the following lines whose requirement is
met: 1. The working-dir configuration setting is configured for the specific command. The value of the working-dir
configuration key can be an absolute path to the working directory or a relative one w.r.t. the directory of the considered
configuration file. If the command should be executed in the actual working directory, use <working-dir> as the value
in the configuration file. 2. The directory of the considered configuration file.

4.7 Paths

All relative paths in the configuration should be relative to the directory in which the configuration resides. While
relative paths are convenient for users as they can freely choose the root directory of an application, some applications
require an absolute path. In such case, use the ${PWD} environment variable (both POSIX and non-POSIX systems)
to convert a relative path in your configuration into an absolute path for calling these particular applications.

4.8 Example configuration

commands: # The mandatory commands key
build: Build the project # A map of command keys with their explanation
clean: Clean the project
rebuild: Build + clean

patterns: # Declare the patterns for this configuration file
COMPILER: # Declare the COMPILER pattern

default-values: # Default values to use for the pattern
- g++
- clang++

short-option: c # Declare values for this pattern by using the -c
→˓[VALUES] option when calling exec-helper

long-option: compiler # Declare values for this pattern by using the --
→˓compiler [VALUES] option when calling exec-helper

MODE: # Declare the MODE pattern
default-values:

- debug
- release

short-option: m

(continues on next page)

18 Chapter 4. Configuration

Exec-helper, Release 0.5.0

(continued from previous page)

long-option: mode

additional-search-paths:
- /tmp

Define the commands listed under 'commands'
build:

- command-line-command # Use the command-line-command plugin when using the
→˓'build' command

clean:
- command-line-command # Use the command-line-command plugin when using the

→˓'clean' command

rebuild:
- clean # Call the 'clean' command when calling the 'rebuild'

→˓command
- build # Call the 'build' command when calling the 'rebuild'

→˓command

command-line-command: # Configure the command-line-command
patterns: # Define the default patterns to use

- COMPILER
- MODE

command-line: # Configure the execution when the specific command
→˓is not listed. Will be executed from the directory of this configuration file

- echo
- building
- using
- "{COMPILER}" # This value will be replaced by the COMPILER pattern

→˓value
- in
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- mode.
- wd=$(pwd) # This command will be executed in a subshell and

→˓replaced by its value before the actual command is executed

clean: # Configure the execution of the build command
patterns: # Overwrite the parent patterns

- MODE
- EH_WORKING_DIR # Use the EH_WORKING_DIR pattern

command-line:
- echo
- cleaning
- mode.
- "{MODE}" # This value will be replaced by the MODE pattern

→˓value
- wd=$(pwd)

working-dir: "{EH_WORKING_DIR}" # The command will be executed from the
→˓current working directory rather than from the directory of this configuration file

4.8. Example configuration 19

Exec-helper, Release 0.5.0

4.9 See also

See Patterns (5) for more information on defining and using patterns.

See Environment (5) for more information on configuring execution environments.

See exec-helper (1) for information about the usage of exec-helper.

See Plugins (5) for the available plugins and their configuration options.

See Custom plugins (5) for the available plugins and their configuration options.

20 Chapter 4. Configuration

CHAPTER 5

Plugins

5.1 Custom plugins

5.1.1 Where to put your plugins

Exec-helper searches dynamically for (most of) its plugins in all the plugin search paths. It searches in the following
locations (earlier listed locations take precedence over later listed locations for plugins with the same name):

1. Using the --additional-search-path command-line option. Multiple paths can be passed to it using
multiple arguments. Earlier mentioned paths take precedence over later mentioned paths. The paths can be
absolute or relative w.r.t. the used exec-helper configuration file. E.g.:

exec-helper build --additional-search-path blaat /tmp

will add the relative path blaat and the absolute path /tmp to the plugin search paths.

2. Using the additional-search-paths key in the exec-helper configuration file. The key takes an
ordered list containing absolute or relative (w.r.t. the exec-helper configuration file it is mentioned in)
paths. Earlier listed elements take precedence over lower listed elements. E.g.:

additional-search-paths:
- blaat
- /tmp

3. The system plugin paths. These paths contain (most of) the default modules bundled with exec-helper. It
is not recommended to add your custom plugins to any of these paths.

5.1.2 Listing the modules

Exec-helper lists the modules it currently finds by using the --list-plugins command-line option.

21

Exec-helper, Release 0.5.0

5.1.3 Writing a lua plugin

Exec-helper supports luaJIT 2.0.5. LuaJIT is a Lua 5.1 implementation with some additional features from Lua 5.2.
All LuaJIT functionality is embedded in the exec-helper binary, no LuaJIT install is required for running the
plugin.

Exec-helper treats all files in the plugin search paths with a lua suffix as a compatible lua plugin. The name of the
module is derived from the rest of the filename.

5.1.4 The interface

A lua plugin is called within a wider (lua) context containing some objects and (convenience) functions.

Exec-helper specific functions

The following exec-helper specific functions are available next to the lua 5.1 functions:

get_commandline()
Returns a list of the command-line arguments set by the command-line key in the configuration. Use this to
allow users of your plugin to freely set additional, plugin-specific command-line settings that can not be set by
other configuration options. These additional command-line settings must be added explicitly by this plugin in
the right position. E.g:

task:add_args(get_commandline())

get_environment()
Returns a two-level Lua table containing the environment in which the task will be executed. The plugin can read
and modify this environment. Values set by the environment key in the configuration are added automatically to
this list before this plugin is called, there is no need to do this explicitly.

Note: The PWD environment variable, following POSIX convention, is set by the application to the working
directory of the task. Therefore, its value cannot be overriden in a custom module.

get_verbose(string arg)
Add arg to the current tasks’ command line if verbose mode is activated. This function does nothing if verbose
mode is not activated. E.g.:

task:add_args(get_verbose('--debug'))

register_task(Task task)
Registers the given task as a task to execute by the executor(s). Patterns associated with the task will be
automatically permutated and substituted. E.g.:

register_task(task)

register_tasks(array<Task> tasks)
Registers the given tasks as multiple tasks to execute by the executor(s). Patterns associated with the task will
be automatically permutated and substituted. E.g.:

register_tasks(tasks)

run_target(Task task, array<string> targets)
Applies the given targets using the given task as their base task. These targets may contain patterns. The result
of these applications is returned as an array<Task>. The returned tasks must be explicitly registered in order
to be executed. E.g.:

22 Chapter 5. Plugins

Exec-helper, Release 0.5.0

run_target(task, {'cmake', 'ninja'})

user_feedback_error(string message)
Show the given message as an error to the user. E.g.:

user_feedback_error('You should not do that!')

input_error(string message)
Show the given message as an error to the user and stop execution of this module. E.g.:

input_error('Cowardly refusing to perform that action!')

Exec-helper specific types

The following types (classes) are available in your module:

Config
Behaves like an ordinary lua table. Only reading from it using the access operator ([key]) is allowed. The access
operator takes a string and returns a Lua table.

Task
Contains the task that is being built. It has the following member functions:

• add_args(array<string> args): Append the given arguments to this task.

• new(Task task): Create a new, default task with an empty command line.

• copy(Task task): Returns a copy of the given task.

Pre-defined objects

The following pre-defined objects are automatically present when your module is called:

verbose
A boolean indicating whether the verbose command-line flag was set for this invocation.

jobs
Integer indicating the number of jobs to use for executing this plugin, if the plugin supports parallel job execu-
tion. Ignore this if this is not the case.

Example:

task:add_args({'--jobs', jobs})

Adds --jobs \<value\> to the command line of the given task where <value> is the value of the config-
ured number of jobs.

config
A pure Lua table containing the configuration of the particular exec-helper configuration into one easy-to-
navigate syntax tree. The tree may contain multiple levels. Accessing a table value in Lua returns a new Lua
table. Use the one() and list() function to convert the table to a single value or list respectively. These
functions will return nil when the given key has no value. The functions distinguish between no value (nil) and
an empty value (e.g. an empty list).

Example:

task:add_args({'--directory', one(config['build-dir']) or '.'})

5.1. Custom plugins 23

Exec-helper, Release 0.5.0

Adds --directory \<value\> to the task command line, where <value> is one value set by the build-dir
key or . when no such key exists in the configuration of this plugin.

task
A Task object containing the current context for executing the task, this may include prefixes from other plugins.
It is not possible to erase these prefixes. If your module requires pre- or post-tasks, you can create one or more
new tasks and register it. Similarly, it is possible to create new tasks with the same context as the given task
variable by copy constructing it. Use the Lua : operator for calling member functions of a task.

For example, to create a module that calls echo hello on its invocation, use:

task:add_args({'echo', 'hello'})

5.1.5 Example

A module for a directly callable tool

Let’s implement a simple module for calling make called make:

make.lua:

task:add_args({'make'})

task:add_args({'--directory', one(config['build-dir']) or '.'})
task:add_args(get_verbose('--debug'))
task:add_args({'--jobs', one(config['jobs']) or jobs})
task:add_args(get_commandline())

register_task(task)

This module adds make with some additional arguments from the config and the options to the existing task task. At
the end, it registers the task for execution.

The relevant section in the users’ exec-helper configuration may look like:

commands:
build: Build the project

patterns:
MODE:

default-values:
- debug
- release

short-option: m
long-option: mode

build:
- make

make:
patterns:

- MODE

build:
build-dir: "build/{MODE}"
jobs: 3
command-line: [--dry-run, --keep-going]

24 Chapter 5. Plugins

Exec-helper, Release 0.5.0

Running eh build --mode release --verbose will execute the command-line:

make --directory build/release --debug --jobs 3 --dry-run --keep-going

A module calling an other command

Let’s implement a simple module for clang-static-analyzer. Per the docs, this analyzer is used by prepending
scan-build <options> <build command> to the build command line. Obviously, users will already have
configured a command (e.g. build) for building the project without any analysis. For maintenance and convenience
purposes, we do not want the user to replicate this build command for this plugin, but rather, we want our plugin to
add some arguments to the tasks’ command line and call the configured build-command for extending the task with
the actual build configuration.

Let’s implement this module, called under the name some-analyzer:

some-analyzer.lua:

task:add_args({'scan-build'})
task:add_args(get_verbose('-v'))
task:add_args(get_commandline())

local build_commands = list(config['build-command'])

if type(build_commands) == 'nil' then
input_error('Clang-static-analyzer: one must define at least one build command')

end

if type(next(build_commands)) == 'nil' then
user_feedback_error('Clang-static-analyzer: one must define at least one build

→˓command')
input_error('Clang-static-analyzer: one must define at least one build command')

end

register_tasks(run_target(task, build_commands))

This module adds scan-build and some additional arguments to the command line of the task. Next, it takes the
build-command configuration values, does some validity checks on it, and requests exec-helper to extend the
command with the arguments of the given command values.

The relevant section in the users’ exec-helper configuration (combined with the module above for implementing
the build command) may look like:

build:
- make

make:
build-dir: build

some-analyzer:
build-command: build
command-line:

- --keep-going

Running eh some-analyzer --jobs 4 would execute the command line:

scan-build --keep-going make --directory build --jobs 4

5.1. Custom plugins 25

Exec-helper, Release 0.5.0

5.2 Bash plugin

5.2.1 Description

The bash plugin is used for executing commands in the bash shell, rather than executing the command right away.
This is very useful for executing command lines that need special shell characters like &&, |, ;, >.

5.2.2 Mandatory settings

Mandatory settings for all modes

command
Command to execute in the shell, as a string. See the -c option of bash for more information.

5.2.3 Optional settings

The configuration of the bash plugin may contain the following additional settings:

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

5.2.4 Example

Configuration

commands: # Define the commands that can be run
example: run the bash example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Define the default value
- world!

example:
- bash # Use the bash plugin when running the 'example'

→˓command

(continues on next page)

26 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

bash: # Sh plugin configuration settings
example: # Settings specific to the 'example' command

environment: # Define the environment
EXAMPLE_ENVIRONMENT: hello

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo
→˓"working directory is $(pwd)"' # Define the shell command

command-line: [-ex] # Pass additional command line arguments
working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.2.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.3 Bootstrap plugin

5.3.1 Description

The bootstrap is used for executing bootstrap files. This is often used in build chains.

5.3.2 Mandatory settings

There are no mandatory settings for the bootstrap plugin.

5.3.3 Optional settings

The configuration of the bootstrap plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

5.3. Bootstrap plugin 27

Exec-helper, Release 0.5.0

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

filename
The name of the bootstrap script. Default: bootstrap.sh.

5.3.4 Example

Configuration

commands: # Define the commands that can be run
example: run the bootstrap example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Only define the default value
- world!

example:
- bootstrap # Use the command-line-command plugin when running

→˓the 'example' command

bootstrap: # Bootstrap configuration settings
example: # Settings specific to the 'example' command

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

filename: src/bootstrap-mock.sh # Set the name of the bootstrap script
command-line: # Define 2 additional command line flags

- "hello"
- "{EXAMPLE_PATTERN}"

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.3.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.4 Clang-static-analyzer plugin

5.4.1 Description

The clang-static-analyzer plugin is used for executing the clang-static-analyzer static code analysis tool.

28 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.4.2 Mandatory settings

The configuration of the clang-static-analyzer plugin must contain the follwing settings:

build-command
The exec-helper build target command or plugin to execute for the analysis.

5.4.3 Optional settings

The configuration of the clang-static-analyzer plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

5.4.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the make example
build: Build the files
clean: Clean the build

patterns: # Define the patterns that can be used
MAKE_TARGET: # Define make targets for building

default-values: # Only define the default value
- hello
- world

example:
- clean
- clang-static-analyzer # Use the clang-static-analyzer plugin when running

→˓the 'example' command

build:
- make

clean:
- make

clang-static-analyzer: # Configure clang-static-analyzer
build-command: build # Execute the 'build' command for building and

→˓analyzing the project
command-line: # Add additional arguments to the clang-static-

→˓analyzer invocation
- -enable-checker
- alpha.clone.CloneChecker

make:
build:

patterns:
(continues on next page)

5.4. Clang-static-analyzer plugin 29

Exec-helper, Release 0.5.0

(continued from previous page)

- MAKE_TARGET
command-line:

- "{MAKE_TARGET}"
clean:

command-line:
- clean

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
rm -rf $(BUILD_DIR)

.PHONY: clean

src/hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

src/world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

30 Chapter 5. Plugins

Exec-helper, Release 0.5.0

eh example

See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.5 Clang-tidy plugin

5.5.1 Description

The clang-tidy plugin is used for executing the clang-tidy static code analysis tool.

5.5.2 Mandatory settings

There are no mandatory settings for the clang-tidy plugin.

5.5.3 Optional settings

The configuration of the clang-tidy plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

sources
A list of sources that must be checked by the clang-tidy plugin. The sources may contain wildcards.

checks
A list of checks that should be enabled or disabled. Enabling or disabling checks is done the same way as they
are enabled on the clang-tidy command line. Default: no checks will be enabled or disabled on the command
line, meaning the default checks enabled by clang will be checked.

warning-as-errors
Threat warnings as errors. The value associated with this key is either:

• A list of checks, defining which warnings will be threated as errors. See checks for the format.

• The single keyword all: means that all enabled checks will be threated as errors.

5.5. Clang-tidy plugin 31

Exec-helper, Release 0.5.0

Note: This options is only supported if the clang-tidy binary supports the
-warnings-as-error=<string> option.

5.5.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the make example

patterns: # Define the patterns that can be used
TARGET: # Define targets to check

default-values: # Only define the default value
- hello
- world

example:
- clang-tidy # Use the clang-tidy plugin when running the 'example

→˓' command

clang-tidy:
patterns:

- TARGET
sources:

- "src/{TARGET}.cpp"
checks:

- "*"
- "cppcoreguidelines-*"
- "modernize-*"
- "performance-*"
- "readability-*"
- "-fuchsia-*"
- "-llvmlibc-*"

command-line:
- -fix

Additional files

In order for the above example to work, the following files need to be created in the src directory:

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

(continues on next page)

32 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.5.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.6 CMake plugin

5.6.1 Description

The cmake plugin is used for generating, building and installing software using the CMake build generator system.

5.6.2 Mandatory settings

There are no mandatory settings for this plugin, though it is recommended to configure the mode setting explicitly.

5.6.3 Optional settings

The configuration of the make plugin may contain the following settings:

Settings for all modes

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

5.6. CMake plugin 33

Exec-helper, Release 0.5.0

mode
Set the mode of the CMake call for the specific command. Default: generate.

Supported modes are:

• Generate: For generating a build directory based on the CMake configuration in the source. This is often
callend the configure or build init step.

• Build: Build the generated project

• Install: Install the generated project

build-dir
The path to the build directory. This is either an absolute path are a path relative to the location of this file.
Default: . (the directory of the exec-helper configuration).

Settings for the generate mode

source-dir
The directory containing the root CMakeLists.txt file of the sources. Default: . (the directory of the
exec-helper configuration).

generator
The generator to use for generating the build directory. See the CMake documentation on which generators are
supported for your platform and the value(s) to explicitly set them. Default: the default one for your system and
environment. See the CMake documentation on the details.

defines
A map of the build generator settings for configuring the generator.

Settings for the build mode

target
The specific CMake target to build. Default: the default target. See the CMake documentation for more details.

config
The configuration for multi-configuration tools. Default: the default configuration. See the CMake documenta-
tion for more details.

Settings for the install mode

config
The configuration for multi-configuration tools. Default: the default configuration. See the CMake documenta-
tion for more details.

prefix
Override the configured prefix set during the generate mode. Default: the default installation prefix. See the
CMake documentation for more details.

component
Limit installation to the given component. Default: all installation targets.

5.6.4 Example

34 Chapter 5. Plugins

Exec-helper, Release 0.5.0

Configuration

commands: # Define the commands that can be run
example: Run the cmake example
clean: Clean the build
run: Run the files that were built

patterns: # Define the patterns that can be used
CMAKE_TARGET: # Define the CMAKE_TARGET pattern.

default-values: # Only define the default value
- hello
- world

example:
- build # Use the cmake plugin when running the 'example'

→˓command
- run

build:
- generate
- build-only
- install

generate: cmake
build-only: cmake
install: cmake

clean: # Use the cmake plugin when running the 'clean'
→˓command

- cmake

run:
- command-line-command

cmake:
environment: # Define additional environment variables

WORLD: "world!"
patterns: # The patterns that are used by the cmake plugin

- CMAKE_TARGET
source-dir: . # Set the source dir for all cmake targets that do not

→˓further specialize this
build-dir: build # Set the build dir for all cmake targets that do not

→˓further specialize this

generate: # Specific settings for the 'generate' command
mode: generate # Set the mode
defines: # Set some defines

CMAKE_BUILD_MODE: RelWithDebInfo
command-line: # Define additional command line arguments

- -Wno-dev # An example argument passed to cmake

build-only: # Specific settings for the 'build-only' command
mode: build # Set the mode

install: # Specific settings for the 'install' command
mode: install # Set the mode
prefix: /tmp # Set the prefix

(continues on next page)

5.6. CMake plugin 35

Exec-helper, Release 0.5.0

(continued from previous page)

component: runtime # Limit to installing 'runtime' components

clean:
mode: build
target: clean

command-line-command:
patterns:

- CMAKE_TARGET
command-line:

- build/{CMAKE_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)
project(cmake-example CXX)

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)

add_executable(hello src/hello.cpp)
add_executable(world src/world.cpp)
install(TARGETS hello world DESTINATION bin COMPONENT runtime)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

36 Chapter 5. Plugins

Exec-helper, Release 0.5.0

eh example

5.6.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.7 Command-line-command plugin

5.7.1 Description

The command-line-command plugin is used for executing arbitrary command lines. This plugin can be used for
constructing the command line for commands that do not have a corresponding plugin available.

5.7.2 Mandatory settings

The configuration of the command-line-command must contain the following settings:

command-line
The command-line to execute. There are two different usages:

• No identification key: Set one command line as a list of separate arguments. This form is only usable if
only one line needs to be executed.

• With identification key: Make a map with arbitrary keys, where each associated value is one command
line, described as a list of separate arguments. This form is usable if one or more lines need to be executed.
Multiple commands are executed in the order the identification keys are defined.

Note: see the documentation of wordexp (3) for the limitations on what characters are not allowed in the
command-line command.

5.7.3 Optional settings

The configuration of the command-line-command plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

5.7. Command-line-command plugin 37

Exec-helper, Release 0.5.0

5.7.4 Example

Configuration

commands: # Define the commands that can be run
example: run the command-line example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Define the default value
- world!

example:
- command-line-command # Use the command-line-command plugin when running

→˓the 'example' command

command-line-command: # Command-line-command configuration settings
example: # Settings specific to the 'example' command

environment: # Define the environment
EXAMPLE_ENVIRONMENT: hello

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

command-line: # Define 2 command lines
- hello: [echo, "${EXAMPLE_ENVIRONMENT}"]
- world: # The same as [echo, "{EXAMPLE_PATTERN}"]

- echo
- "{EXAMPLE_PATTERN}"

- workingdir: [echo, working, directory, is, "$(pwd)"] # Print out
→˓the current working directory

working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.7.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.8 Cppcheck plugin

5.8.1 Description

The cppcheck plugin is used for executing the cppcheck static code analysis tool.

38 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.8.2 Mandatory settings

There are no mandatory settings for the cppcheck plugin.

5.8.3 Optional settings

The configuration of the cppcheck plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

enable-checks
A list of checks that should be enabled or disabled. Check the documentation of cppcheck for a list of all the
available checks. Default: all.

src-dir
The base directory containing all the files to check. Default: . (the current working directory).

5.8.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the cppcheck example

patterns: # Define the patterns that can be used
TARGET: # Define targets to check

default-values: # Only define the default value
- hello
- world

example:
- cppcheck # Use the cppcheck plugin when running the 'example'

→˓command

cppcheck: # Cppcheck configuration for the 'example' command
example:

patterns: # Define the patterns to use
- TARGET

src-dir: # Define the source dir to look in
- src

target-path: # The target path to look in
- "{TARGET}.cpp"

enable-checks: # The list of additional checks to enable

(continues on next page)

5.8. Cppcheck plugin 39

Exec-helper, Release 0.5.0

(continued from previous page)

- warning
- style
- performance
- portability
- information

command-line: # Set additional arguments
- --error-exitcode=255

Additional files

In order for the above example to work, the following files need to be created in the src directory:

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.8.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.9 Docker plugin

5.9.1 Description

The Docker plugin is used for running or attaching to a Docker container.

40 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.9.2 Mandatory settings

Mandatory settings change depending on which mode is selected. See mode for more information.

5.9.3 Optional settings

The configuration of the make plugin may contain the following settings:

Settings for all modes

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

mode
Set the mode of the Docker call for the specific command. Default: exec.

Supported modes are:

• run: Create a new container based on the given image and runs the given command. Note: use --rm as
an additional command line argument to automatically clean up the created container.

• exec: Run the command in the given, actively running, container.

env
A map of environment key/value pairs set inside the container. Default: an empty map.

interactive
Boolean indicating whether to run interactively inside the container. Check the Docker documentation for more
information. Default: same as the used Docker default.

tty
Boolean indicating whether to use a pseudo-tty inside the container. Check the Docker documentation for more
information. Default: same as the used Docker default.

privileged
Boolean indicating whether to run the container in privileged mode. Check the Docker documentation for more
information. Default: no.

user
Set the given user inside the container. Check the Docker documentation for more information. Default: the
container default.

5.9. Docker plugin 41

Exec-helper, Release 0.5.0

Settings for the run mode

volumes
List of volumes to be mounted into the container. Eeach value maps directly to a Docker volume configuration.
Check the Docker documentation for all the options and formats that can be used. Default: an empty list.

image
The Docker image to use as the base image for creating a new container. This configuration option is mandatory
when the plugin is in run mode.

Settings for the exec mode

container
The Docker container to execute the command in. Note that the container must already be running when this
command is called. This configuration option is mandatory when the plugin is in exec mode.

5.9.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the docker example
run: Show the contents of the /example folder

patterns: # Define the patterns that can be used
IMAGE: # Define the IMAGE

default-values: # Define the default value(s)
- ubuntu:rolling

short-option: i # Define the short option for overriding the default
→˓value

long-option: image # Define the long option for overriding the default
→˓value

COMMAND:
default-values:

- ls
- echo

example:
- docker # Use the docker plugin when running the 'example'

→˓command

ls:
- command-line-command # Use the 'command-line-command' plugin for

→˓constructing the 'ls' command

echo:
- command-line-command # Use the 'command-line-command' plugin for

→˓constructing the 'echo' command

docker:
example:

patterns: # Define the patterns we will use for this command.
- IMAGE # Use the IMAGE pattern => all occurences of '{IMAGE}

→˓' will be replaced by the actual value
(continues on next page)

42 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

- COMMAND
mode: run # Use the 'run' mode
image: "{IMAGE}" # Set the image. The quotes "" are required due to

→˓the YAML specification and its JSON compatibility.
envs: # Define additional environment variables inside the

→˓container
SHELL: xterm-color # Use a YAML dictionary to define all kay-value pairs

interactive: yes # Run an interactive shell in the container
tty: no # Do not attach to a pseudo-tty in the container
privileged: no # Do not run a privileged container
user: root # Explicitly run as the root user
volumes:

- "${PWD}:/examples" # Mount the folder of this configuration file in
→˓the container on the /examples path

targets: "{COMMAND}" # Run the 'run' task in the configured container

command-line-command:
ls: # Configure the 'run' command

command-line: [ls, -la, /root] # Run 'ls -la /root'

echo: # configure the 'echo' command
command-line: [echo, Hello world] # Run 'echo Hello world'

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.9.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.10 Execute plugin

5.10.1 Description

The execute plugin is used for executing specific plugins or, if no associated plugin is found, following commands
defined in the configuration. This plugin is mainly used by other plugins that want to execute other commands.

5.10.2 Mandatory settings

There are no mandatory settings for this plugin.

5.10. Execute plugin 43

Exec-helper, Release 0.5.0

5.10.3 Optional settings

There are no optional settings for this plugin.

5.10.4 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.11 Fish plugin

5.11.1 Description

The fish plugin is used for executing commands in the fish shell, rather than executing the command right away. This
is very useful for executing command lines that need special shell characters like &&, |, ;, >.

5.11.2 Mandatory settings

Mandatory settings for all modes

command
Command to execute in the shell, as a string. See the -c option of fish for more information.

5.11.3 Optional settings

The configuration of the fish plugin may contain the following additional settings:

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

44 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.11.4 Example

Configuration

commands: # Define the commands that can be run
example: run the fish example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Define the default value
- world!

example:
- fish # Use the fish plugin when running the 'example'

→˓command

fish: # Sh plugin configuration settings
example: # Settings specific to the 'example' command

environment: # Define the environment
EXAMPLE_ENVIRONMENT: hello

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

command: 'echo {$EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo
→˓"working directory is" (pwd)' # Define the shell command

command-line: [--debug=exec-fork] # Pass additional command line
→˓arguments

working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.11.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.12 Lcov plugin

5.12.1 Description

The lcov plugin is used for executing code coverage analysis using lcov.

5.12.2 Mandatory settings

The configuration of the lcov plugin must contain the following settings:

5.12. Lcov plugin 45

Exec-helper, Release 0.5.0

run-command
The exec-helper command or plugin to use for running the binaries for which the coverage needs to be
analyzed.

5.12.3 Optional settings

The configuration of the lcov plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

info-file
The lcov .info file to use for the analysis. Default: lcov-plugin.info.

base-directory
The base directory to use for the lcov analysis. Check the lcov documentation on the --base-directory
option for more information. Default: . (the current working directory).

directory
Use the coverage data files in the given directory. Check the lcov documentation on the --directory option
for more information. Default: . (the current working directory).

zero-counters
Set this option to yes to reset the coverage counters before starting the analysis. All other values are threated as
no. Default: no.

gen-html
Set this option to yes to enable HTML report generation of the coverage data. Default: no.

gen-html-output
Set the output directory of the generated HTML report. Does nothing if gen-html is not enabled. Default: .
(the current working directory).

gen-html-title
Set the title of the generated HTML report. Does nothing if gen-html is not enabled. Default: Hello.

gen-html-command-line
Set additional command line options for the gen html stage. Default: no additional command line options.

excludes
A list of directories and files to excluse from the coverage report. The paths are relative to the current working
directory. Default: an empty list.

5.12.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the lcov example
build: Build the files
clean: Clean the build
run: Run the built binaries

(continues on next page)

46 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

patterns: # Define the patterns that can be used
MAKE_TARGET: # Define make targets for building

default-values: # Only define the default value
- hello
- world

example:
- build
- lcov # Use the lcov plugin when running the 'example'

→˓command

build:
- make

clean:
- make
- command-line-command

run:
command-line-command

lcov: # Configure lcov
run-command: run # Execute the 'build' command for building, running

→˓and analyzing the project
info-file: build/coverage.info # Create and use the coverage.info file in the

→˓build dir
base-directory: . # LCOV's base-directory functionality
directory: . # LCOV's directory functionality
zero-counters: yes # Zero the counters before executing the analysis
gen-html: yes # Generate a HTML coverage report
gen-html-output: build/coverage # Output the HTML coverage report to build/

→˓coverage
gen-html-title: "LCOV-example" # Set the title of the HTML coverage report
excludes: # Set which entries to exclude from the report

- /usr/include/*

make:
build:

patterns:
- MAKE_TARGET

command-line:
- "{MAKE_TARGET}"

clean:
command-line:

- clean

command-line-command:
patterns:

- MAKE_TARGET
run:

command-line: ["build/{MAKE_TARGET}"]
clean:

command-line:
remote-gcda-file: [rm, -rf, "{MAKE_TARGET}.gcda"]
remote-gcno-file: [rm, -rf, "{MAKE_TARGET}.gcno"]

5.12. Lcov plugin 47

Exec-helper, Release 0.5.0

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.12.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

48 Chapter 5. Plugins

Exec-helper, Release 0.5.0

See Plugins (5) for information about the configuration file format.

5.13 Make plugin

5.13.1 Description

The make plugin is used for executing Makefiles.

5.13.2 Mandatory settings

There are no mandatory settings for this plugin.

5.13.3 Optional settings

The configuration of the make plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

build-dir
The path to the Makefile. This is either an absolute path are a path relative to the location of this file. Default: .
(the current working directory).

5.13.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the make example
clean: Clean the build
run: Run the files that were built

patterns: # Define the patterns that can be used
MAKE_TARGET: # Define the EXAMPLE_PATTERN.

default-values: # Only define the default value
- hello
- world

example:
- clean

(continues on next page)

5.13. Make plugin 49

Exec-helper, Release 0.5.0

(continued from previous page)

- make # Use the make plugin when running the 'example'
→˓command

- run

clean: # Use the make plugin when running the 'clean' command
- make

run:
- command-line-command

make:
environment: # Define additional environment variables

WORLD: "world!"
example: # Specific settings for the 'example' command

patterns: # The patterns that are used by the make plugins
- MAKE_TARGET

build-dir: $(pwd) # Set the build dir
command-line: # Define additional command line arguments

- --keep-going # An example argument passed to make
- "{MAKE_TARGET}" # Define the make target to execute

clean:
command-line:

- clean

command-line-command:
patterns:

- MAKE_TARGET
command-line:

- build/{MAKE_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

50 Chapter 5. Plugins

Exec-helper, Release 0.5.0

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.13.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

5.14 Meson plugin

5.14.1 Description

The meson plugin is used for setting up, compiling, installing and testing software using the Meson build generator
system.

5.14.2 Mandatory settings

Mandatory settings for all modes

mode
Set the mode of the Meson call for the specific command. Default: setup.

Supported modes are:

• setup: For setting up the build directory based on the Meson configuration in the source. This is often
callend the configure or build init step.

• compile: Compiles (or builds) the generated project

5.14. Meson plugin 51

Exec-helper, Release 0.5.0

• test: Run the configured test suite using Meson

• install: Install the generated project

5.14.3 Optional settings

The configuration of the meson plugin may contain the following additional settings:

Settings for all modes

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

build-dir
The path to the build directory. This is either an absolute path are a path relative to the location of this file.
Default: . (the directory of the exec-helper configuration).

Additional settings for the setup mode

source-dir
The directory containing the root meson.build file of the sources. Default: . (the directory of the
exec-helper configuration).

build-type
Set the Meson build type explicitly. See the --buildtype parameter of meson setup for more informa-
tion.

cross-file
Set the Meson cross-file. See the --cross-file parameter of meson setup for more information.

prefix
Set the Meson installation prefix. See the --prefix parameter of meson setup for more information.

options
A map of the options to set for setting up the build. See the -D parameter of :code‘meson setup‘ for more
information.

Additional settings for the compile mode

jobs
Fix the number of jobs to use. Default: auto or the number of jobs set on the exec-helper invocation.

52 Chapter 5. Plugins

Exec-helper, Release 0.5.0

Additional settings for the test mode

suites
Set the test suites to run. By default, this parameter is omitted.

targets
Set the targets to run. By default, this parameter is omitted.

5.14.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the meson example
run: Run the files that were built

patterns: # Define the patterns that can be used
MESON_TARGET: # Define the MESON_TARGET pattern.

default-values: # Only define the default value
- hello
- world

example:
- build # Use the meson plugin when running the 'example'

→˓command
- run

build: # Subdivide the 'build' command into three
→˓consecutive commands

- generate
- build-only
- install

generate: meson # Define the subcommands. These commands can be
→˓called directly to.
build-only: meson
install: meson

run:
- command-line-command # Use the command-line-command plugin for the 'run'

→˓command

meson:
environment: # Define additional environment variables

WORLD: "world!"

prefix: /tmp # Set the installation prefix
source-dir: . # Set the source dir for all meson targets that do not

→˓further specialize this
build-dir: build # Set the build dir for all meson targets that do not

→˓further specialize this

generate: # Specific settings for the 'generate' command
mode: setup # Set the mode
options: # Set some defines

test: true

(continues on next page)

5.14. Meson plugin 53

Exec-helper, Release 0.5.0

(continued from previous page)

command-line: # Define additional command line arguments
- --strip # An example argument passed to make

build-only: # Specific settings for the 'build-only' command
mode: compile # Set the mode
jobs: 1 # Always compile with one thread

install: # Specific settings for the 'install' command
mode: install # Set the mode

command-line-command:
run:

patterns: # The patterns that are used by the 'run' command
- MESON_TARGET

command-line:
- build/{MESON_TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

meson.build:

project('example', 'cpp',
version: '0.1.0',
default_options: [
'cpp_std=c++17',

]
)

hello = executable('hello', ['src/hello.cpp'],
install : true,

)

world = executable('world', ['src/world.cpp'],
install : true,

)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;

(continues on next page)

54 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

return EXIT_SUCCESS;
}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.14.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.15 Ninja plugin

5.15.1 Description

The ninja plugin is used for executing Makefiles.

5.15.2 Mandatory settings

There are no mandatory settings for this plugin.

5.15.3 Optional settings

The configuration of the ninja plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

build-dir
The path to the build directory. This is either an absolute path are a path relative to the location of this file.
Default: . (the current working directory).

5.15. Ninja plugin 55

Exec-helper, Release 0.5.0

5.15.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the ninja example
clean: Clean the build
run: Run the files that were built

patterns: # Define the patterns that can be used
TARGET: # Define the EXAMPLE_PATTERN.

default-values: # Only define the default value
- hello
- world

example:
- clean
- ninja # Use the ninja plugin when running the 'example'

→˓command
- run

clean: # Use the ninja plugin when running the 'clean'
→˓command

- ninja

run:
- command-line-command

ninja:
environment: # Define additional environment variables

WORLD: "world!"
build-dir: . # Set the build dir
example: # Specific settings for the 'example' command

patterns: # The patterns that are used by the ninja plugins
- TARGET

command-line: # Define additional command line arguments
- -k # An example argument passed to ninja
- 2
- "{TARGET}" # Define the ninja target to execute

clean:
command-line:

- clean

command-line-command:
patterns:

- TARGET
command-line:

- build/ninja/{TARGET}

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

ninja.build:

56 Chapter 5. Plugins

Exec-helper, Release 0.5.0

CXX = g++
CXXFLAGS = -Wall
LDFLAGS =
BUILD_DIR = build/ninja

rule cc
command = $CXX $CXXFLAGS $LDFLAGS -o $out $in

rule rmdir
command = rm -rf $dir

build $BUILD_DIR/hello: cc src/hello.cpp
build hello: phony $BUILD_DIR/hello

build $BUILD_DIR/world: cc src/world.cpp
build world: phony $BUILD_DIR/world

build clean: rmdir
dir = $BUILD_DIR

build all: phony hello world

default all

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.15.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

5.15. Ninja plugin 57

Exec-helper, Release 0.5.0

See Configuration (5) for information about the configuration file format.

5.16 Pmd plugin

5.16.1 Description

The pmd plugin is used for executing the pmd static code analyzer tool suite.

5.16.2 Mandatory settings

There are no mandatory settings for this plugin.

5.16.3 Optional settings

The configuration of the pmd plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

exec
The path to the pmd-run executable. The path can either be an absolute path or a relative path from the current
working directory. Default: pmd.

tool
The pmd tool to use. The currently supported tools are:

• cpd

Default: cpd

language
Specify the language PMD is analyzing. Check the --language option of the pmd documentation for more
information. Default: no explicit language parameter is passed.

Cpd specific settings

minimum-tokens
The minimum token length to be considered a duplicate. Check the --minimum-tokens option of the cpd
documentation for more information. Default: no explicit minimum tokens parameter is passed.

files
A list of files to check for duplicated code. Check the --files option of the cpd documentation for more
information. Default: no explicit files parameter is passed.

58 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.16.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the pmd example

patterns: # Define the patterns that can be used
TARGET: # Define targets to check

default-values: # Only define the default value
- hello
- world

example:
- pmd # Use the cppcheck plugin when running the 'example'

→˓command

pmd: # Cppcheck configuration for the 'example' command
example:

patterns: # Define the patterns to use
- TARGET

exec: pmd
tool: cpd
language: cpp
minimum-tokens: 100
files: src/{TARGET}.cpp
command-line: # Set additional arguments

- --non-recursive

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

5.16. Pmd plugin 59

Exec-helper, Release 0.5.0

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.16.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

5.17 Scons plugin

5.17.1 Description

The scons plugin is used for executing scons.

5.17.2 Mandatory settings

There are no mandatory settings for this plugin.

5.17.3 Optional settings

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

60 Chapter 5. Plugins

Exec-helper, Release 0.5.0

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

build-dir
The path to the build directory. This is either an absolute path are a path relative to the location of this file.
Default: . (the current working directory).

5.17.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the scons example
clean: Clean all built files
run: Run the built binaries

patterns: # Define the patterns that can be used
SCONS_TARGET: # Define the EXAMPLE_PATTERN.

default-values: # Only define the default value
- hello
- world

example:
- clean
- scons # Use the command-line-command plugin when running

→˓the 'example' command
- run

clean:
- command-line-command

run:
- command-line-command

scons:
patterns: # The patterns that are used by the make plugins

- SCONS_TARGET
example: # Specific settings for the 'example' command

command-line: # Define additional command line arguments
- --keep-going # Pass additional options to scons
- "{SCONS_TARGET}" # Define the make target to execute

command-line-command:
clean:

command-line: [rm, -rf, build]
run:

patterns:
- SCONS_TARGET

command-line: ["build/{SCONS_TARGET}"]

5.17. Scons plugin 61

Exec-helper, Release 0.5.0

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

SConstruct:

env = Environment()
Export('env')

SConscript('src/SConscript', variant_dir='build', duplicate=0)

Default(None)

SConscript:

Import('env')

hello = env.Program('hello.cpp')
env.Alias('hello', hello)

world = env.Program('world.cpp')
env.Alias('world', world)

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.17.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

62 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.18 Selector plugin

Description The selector plugin is used for selecting a configuration path based on the value(s) of a target, typically
one from a pattern value.

5.18.1 Mandatory settings

The configuration of the command-line-command must contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

targets
The targets to select on. Note that if patterns are used in this list, they must be listed using the patterns configu-
ration, as is the case for every plugin.

The runtime value(s) associated with the pattern key must resolve either to an existing (configured) plugin or a
configured command.

5.18.2 Optional settings

There are no optional settings for the selector plugin.

5.18.3 Example

Configuration

Usage:
'exec-helper --settings-file <this file> example' will execute both the example1
→˓and example2 target.
Adding the --example <example-value> will only execute the given <example-value>. E.
→˓g.:
'exec-helper --settings-file <this file> example --example example1' will execute
→˓the example1 target only.

commands:
example: An example for using the selector plugin

patterns:
SELECTOR: # Define the pattern to select on.

default-values:
- example1
- example2

short-option: e
long-option: --example

example: # Use the selector for the example command
- selector

selector:
patterns:

- SELECTOR # Tell the selector plugin to use the SELECTOR
→˓pattern for deciding which paths to trigger

(continues on next page)

5.18. Selector plugin 63

Exec-helper, Release 0.5.0

(continued from previous page)

targets: ["{SELECTOR}"] # Execute the target when the selector is activated.
→˓The target is a permutation of the values in the registered patterns

example1: # Define the 'example1' path
- command-line-command

example2: # Define the 'example2' path
- command-line-command

command-line-command:
example1:

command-line: [echo, example1]
example2:

command-line: [echo, example2]

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.18.4 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

5.19 Sh plugin

5.19.1 Description

The sh plugin is used for executing commands in the sh shell, rather than executing the command right away. This is
very useful for executing command lines that need special shell characters like &&, |, ;, >.

5.19.2 Mandatory settings

Mandatory settings for all modes

command
Command to execute in the shell, as a string. See the -c option of sh for more information.

5.19.3 Optional settings

The configuration of the sh plugin may contain the following additional settings:

64 Chapter 5. Plugins

Exec-helper, Release 0.5.0

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

5.19.4 Example

Configuration

commands: # Define the commands that can be run
example: run the sh example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Define the default value
- world!

example:
- sh # Use the sh plugin when running the 'example' command

sh: # Sh plugin configuration settings
example: # Settings specific to the 'example' command

environment: # Define the environment
EXAMPLE_ENVIRONMENT: hello

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo
→˓"working directory is $(pwd)"' # Define the shell command

command-line: [-ex] # Pass additional command line arguments
working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.19.5 See also

See exec-helper (1) for information about the usage of exec-helper.

5.19. Sh plugin 65

Exec-helper, Release 0.5.0

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.20 Valgrind plugin

5.20.1 Description

The valgrind plugin is used for executing code coverage analysis using valgrind.

5.20.2 Mandatory settings

The configuration of the valgrind plugin must contain the following settings:

run-command
The exec-helper command or plugin to use for running the binaries which need to be analyzed.

5.20.3 Optional settings

The configuration of the valgrind plugin may contain the following settings:

patterns
A list of patterns to apply on the command line. See Patterns (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

tool
The valgrind tool to use. Default: the tool is omitted.

5.20.4 Example

Configuration

commands: # Define the commands that can be run
example: Run the lcov example
build: Build the files
clean: Clean the build
run: Run the built binaries

patterns: # Define the patterns that can be used
MAKE_TARGET: # Define make targets for building

default-values: # Only define the default value
- hello
- world

example:
- build
- valgrind # Use the valgrind plugin when running the 'example'

→˓command

(continues on next page)

66 Chapter 5. Plugins

Exec-helper, Release 0.5.0

(continued from previous page)

build:
- make

clean:
- make
- command-line-command

run:
command-line-command

valgrind: # Configure the valgrind plugin
run-command: run # Execute the 'build' command for building, running

→˓and analyzing the project
tool: memcheck # Set the tool
command-line: # Set additional arguments for valgrind

- --error-exitcode=255

make:
build:

patterns:
- MAKE_TARGET

command-line:
- "{MAKE_TARGET}"

clean:
command-line:

- clean

command-line-command:
patterns:

- MAKE_TARGET
run:

command-line: ["build/{MAKE_TARGET}"]
clean:

command-line:
remote-gcda-file: [rm, -rf, "{MAKE_TARGET}.gcda"]
remote-gcno-file: [rm, -rf, "{MAKE_TARGET}.gcno"]

Additional files

In order for the above example to work, the following file hierarchy needs to be created in the directory:

Makefile:

CXX=g++
CXXFLAGS+=-O0 -g --coverage
LDFLAGS+=
SRC_DIR=src
BUILD_DIR=build

hello:
mkdir -p $(BUILD_DIR)
$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/hello $(SRC_DIR)/hello.cpp

world:
mkdir -p $(BUILD_DIR)

(continues on next page)

5.20. Valgrind plugin 67

Exec-helper, Release 0.5.0

(continued from previous page)

$(CXX) $(CXXFLAGS) $(LDFLAGS) -o $(BUILD_DIR)/world $(SRC_DIR)/world.cpp

clean:
rm -rf $(BUILD_DIR)

.PHONY: clean

hello.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "Hello" << std::endl;
return EXIT_SUCCESS;

}

world.cpp:

#include <cstdlib>
#include <iostream>

auto main() -> int {
std::cout << "World!" << std::endl;
return EXIT_SUCCESS;

}

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.20.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

5.21 Zsh plugin

5.21.1 Description

The zsh plugin is used for executing commands in the zsh shell, rather than executing the command right away. This
is very useful for executing command lines that need special shell characters like &&, |, ;, >.

68 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.21.2 Mandatory settings

Mandatory settings for all modes

command
Command to execute in the shell, as a string. See the -c option of zsh for more information.

5.21.3 Optional settings

The configuration of the zsh plugin may contain the following additional settings:

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

patterns
A list of patterns to apply on the command line. See Patterns (5).

enviroment
A list of environment variables that should be set before the commands are executed. See Environment (5).

command-line
Additional command line parameters to pass as a list of separate arguments. By default no additional arguments
are added.

working-dir
The working directory of the command. Can be an absolute path are a relative one w.r.t. the path to the
considered configuration file. Commands that should be executed relative to the current working dir can use the
{EH_WORKING_DIR} pattern.

5.21.4 Example

Configuration

commands: # Define the commands that can be run
example: run the zsh example

patterns: # Define the patterns that can be used
EXAMPLE_PATTERN: # Define the EXAMPLE_PATTERN.

default-values: # Define the default value
- world!

example:
- zsh # Use the zsh plugin when running the 'example'

→˓command

zsh: # Sh plugin configuration settings
example: # Settings specific to the 'example' command

environment: # Define the environment
EXAMPLE_ENVIRONMENT: hello

patterns: # Define the patterns that are used
- EXAMPLE_PATTERN

command: 'echo ${EXAMPLE_ENVIRONMENT} && echo {EXAMPLE_PATTERN} && echo
→˓"working directory is $(pwd)"' # Define the shell command

(continues on next page)

5.21. Zsh plugin 69

Exec-helper, Release 0.5.0

(continued from previous page)

command-line: [-ex] # Pass additional command line arguments
working-dir: /tmp # Set the working directory to a predefined value

Usage

Save the example to an exec-helper configuration file and execute in the same directory:

eh example

5.21.5 See also

See exec-helper (1) for information about the usage of exec-helper.

See Configuration (5) for information about the configuration file format.

See Plugins (5) for information about the configuration file format.

5.22 Description

This document describes the list of plugins that can be used in the associated exec-helper binaries.

5.23 General plugins

command-line-command
The command-line-command plugin is used for executing arbitrary command line commands. See Command-
line-command plugin (5).

sh
The sh plugin is used for executing arbitrary commands in the sh shell. This is very useful for executing
command lines that need special shell characters like &&, |, ;, >. See Sh plugin (5).

bash
The bash plugin is used for executing arbitrary commands in the bash shell. This is very useful for executing
command lines that need special shell characters like &&, |, ;, >. See Bash plugin (5).

fish
The fish plugin is used for executing arbitrary commands in the fish shell. This is very useful for executing
command lines that need special shell characters like &&, |, ;, >. See Fish plugin (5).

zsh
The zsh plugin is used for executing arbitrary commands in the zsh shell. This is very useful for executing
command lines that need special shell characters like &&, |, ;, >. See Zsh plugin (5).

selector
The selector plugin is used for selecting certain configuration paths based on the value of a pattern. See Selector
plugin (5).

docker
The docker plugin is used for running commands inside a Docker container. See Docker plugin (5).

70 Chapter 5. Plugins

Exec-helper, Release 0.5.0

5.24 Build plugins

bootstrap
The bootstrap plugin is used for calling bootstrap scripts, typically used as a step in a build chain. See Bootstrap
plugin (5).

make
The make plugin is used for running the make build system. See Make plugin (5).

scons
The scons plugin is used for running the scons build system. See Scons plugin (5).

cmake
The cmake plugin is used for running the CMake build system. See CMake plugin (5).

meson
The meson plugin is used for running the CMake build system. See Meson plugin (5).

5.25 Analysis plugins

clang-static-analyzer
The clang-static-analyzer plugin is used for applying the clang static analyzer tool on source code files. See
Clang-static-analyzer plugin (5).

clang-tidy
The clang-tidy plugin is used for applying the clang tidy tool on source code files. See Clang-tidy plugin (5).

cppcheck
The cppcheck plugin is used for applying cppcheck on source code files. See Cppcheck plugin (5).

lcov
The lcov plugin is used for applying the lcov code coverage analysis tool. See Lcov plugin (5).

pmd
The pmd plugin is used for applying pmd analysis on source code files. See Pmd plugin (5).

valgrind
The valgrind plugin is used for applying valgrind analysis. See Valgrind plugin (5).

5.26 Custom plugins

You can write your own plugins and integrate them with exec-helper. These plugins are first-class citizens: you
can write plugins that overwrite the system plugins themselves. See Custom plugins (5) for more information on
writing your own plugins.

5.27 See also

See exec-helper (1) for information about the usage of exec-helper.

See Custom plugins (5) for the available plugins and their configuration options.

See Configuration (5) for information about the configuration file format.

5.24. Build plugins 71

Exec-helper, Release 0.5.0

72 Chapter 5. Plugins

CHAPTER 6

Feature documentation

6.1 Command line arguments

@cmd_args @no_args
Feature: Calling exec-helper without command-line options

Scenarios for calling exec-helper without command-line options

Background:
Given a controlled environment

@successful
Scenario: The application is called with no command line arguments and no valid

→˓configuration file
When we call the application
Then the call should fail with return code 1
And stderr should contain 'Could not find an exec-helper settings file'

@successful
Scenario: The application is called with no command line arguments and a valid

→˓configuration file
Given a valid configuration
When we call the application
Then the call should fail with return code 1
And stderr should contain 'must define at least one command'

@cmd_args @invalid_args
Feature: Call the application with invalid arguments

Scenarios for when the application is called with invalid command-line arguments

Examples:
| command_line |
| -b |
| --blaat |

(continues on next page)

73

Exec-helper, Release 0.5.0

(continued from previous page)

| -b blaat |
| --blaat blaat |
| --blaat blaat --foo bar |

Background:
Given a controlled environment

@error
Scenario: The version option is defined on a valid command line

Given a valid configuration
When we add the <command_line> as command line arguments
And we call the application
Then the call should fail with return code 1
And stderr should contain 'unrecognised option'
And stdout should contain 'Usage'
And stdout should contain '--help'

@error
Scenario: The version option is defined on a valid command line with no

→˓configuration file
When we add the <command_line> as command line arguments
And we call the application
Then the call should fail with return code 1
And stderr should contain 'Could not find an exec-helper settings file'
And stderr should not contain 'unrecognised option'
And stdout should contain 'Usage'
And stdout should contain '--help'

@cmd_args @help_option
Feature: Use the help command-line option

Scenarios for when the help option is given on the command line

Examples:
| command_line |
| -h |
| --help |
| --help --version --debug debug |
| --debug debug --help --version |
| --version --debug debug --help |

Background:
Given a controlled environment

@successful
Scenario: The help option is defined on a valid command line

Given a valid configuration
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'Usage'
And stdout should contain 'Optional arguments:'
And stdout should not contain 'Configured commands:'

@successful
Scenario: The help option is defined on a valid command line with no

→˓configuration file

(continues on next page)

74 Chapter 6. Feature documentation

Exec-helper, Release 0.5.0

(continued from previous page)

When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...

→˓'
And stdout should contain 'Optional arguments:'
And stdout should not contain 'Configured commands:'

@successful
Scenario: The help option is defined for a configuration with a command

Given a valid configuration
And the <command> command
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...

→˓'
And stdout should contain 'Optional arguments:'
And stdout should contain 'Configured commands:'
And stdout should contain <command>

Examples:
| command |
| Command1 |

@successful
Scenario: The help option is defined for a configuration with a pattern

Given a valid configuration
And the <pattern> pattern
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...

→˓'
And stdout should contain 'Optional arguments:'
And stdout should not contain 'Configured commands:'
And stdout should contain 'Values for pattern'

Examples:
| pattern

→˓ |
| { "key": "PATTERN", "long_options": ["blaat"], "default_values": ["blaat"] }

→˓ |

@successful
Scenario: The help option is defined for a configuration with a pattern and a

→˓command
Given a valid configuration
And the <command> command
And the <pattern> pattern
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'Usage: exec-helper [Optional arguments] COMMANDS...

→˓'
And stdout should contain 'Optional arguments:'
And stdout should contain 'Configured commands:'

(continues on next page)

6.1. Command line arguments 75

Exec-helper, Release 0.5.0

(continued from previous page)

And stdout should contain 'Values for pattern'
And stdout should contain <command>

Examples:
| command | pattern

→˓ |
| Command1 | { "key": "PATTERN", "long_options": ["blaat"], "default_values":

→˓["blaat"] } |

@cmd_args @version_option
Feature: Use the version command-line option

Scenarios for when the version option is given on the command line

Examples:
| command_line |
| --version |
| --version --debug debug --dry-run |
| --debug debug --version --dry-run |
| --dry-run --debug debug --version |

Background:
Given a controlled environment

@successful
Scenario: The version option is defined on a valid command line

Given a valid configuration
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'exec-helper'
And stdout should contain 'COPYRIGHT'

@successful
Scenario: The version option is defined on a valid command line with no

→˓configuration file
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'exec-helper'
And stdout should contain 'COPYRIGHT'

@cmd_args @dry_run_option
Feature: Use the dry run command-line option

Scenarios for when the dry run option is given on the command line

Examples:
| command_line |
| -n |
| --dry-run |
| --dry-run --debug debug --verbose |
| --debug debug --dry-run --verbose |
| --verbose --debug debug --dry-run |

Background:
Given a controlled environment

(continues on next page)

76 Chapter 6. Feature documentation

Exec-helper, Release 0.5.0

(continued from previous page)

@successful
Scenario: The keep-going option is defined on a valid command line

Given a valid configuration
When we add the <command> command
And we add the <command_line> as command line arguments
And we add the <command> to the command line options
When we call the application
Then the call should succeed
And the <command> command should be called 0 times

Examples:
| command |
| describe |

@cmd_args @keep_going_option
Feature: Use the keep-going command-line option

Scenarios for when the keep-going option is given on the command line

Examples:
| command_line |
| -k |
| --keep-going |
| --keep-going --debug debug --verbose |
| --debug debug --keep-going --verbose |
| --verbose --debug debug --keep-going |

Background:
Given a controlled environment

@successful
Scenario: The keep-going option is defined on a valid command line

Given a valid configuration
When we add the <command> that returns <return_code>
And we add the <command_line> as command line arguments
And we add the <command> <nb_of_times> to the command line options
When we call the application
Then the call should fail with return code <return_code>
And the <command> command should be called <nb_of_times> times

Examples:
command	return_code	nb_of_times
fail	0	1
fail	0	3
fail	1	1
fail	1	4

@cmd_args @list_plugins_option
Feature: Use the 'list plugins' command-line option

Scenarios for when the 'list plugins' option is given on the command line

Examples:
| command_line |
| --list-plugins |
| --list-plugins --debug debug --dry-run |
| --dry-run --list-plugins --debug debug |
| --debug debug --dry-run --list-plugins |

(continues on next page)

6.1. Command line arguments 77

Exec-helper, Release 0.5.0

(continued from previous page)

Background:
Given a controlled environment

@successful
Scenario: The 'list plugins' option is defined on a valid command line

Given a valid configuration
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'command-line-command'

@successful
Scenario: The 'list plugins' option is defined on a valid command line with no

→˓configuration file
When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain 'command-line-command'

6.2 Configuration

Usage information on the configuration can be found on the Configuration page.

@config @environment
Feature: Test settings the environment for the configured commands

Scenarios for setting the environment for configured command(s)

Background:
Given a controlled environment
And a valid configuration

@successful
Scenario: Set the environment to a fixed value

Given the <command> command
And the <environment> is configured for <command> command in the configuration
When we run the <command> command
Then the call should succeed
And the runtime environment for <command> should contain the given

→˓<environment>

Examples:
command	environment
Command1	KEY1:VALUE1
Command2	KEY1:VALUE1;KEY2:VALUE2;KEY3:VALUE3

@successful
Scenario: Replace patterns in the configured environment

Given the <command> command
And the <pattern> pattern
And the <pattern> is configured for <command> command in the configuration
And the <environment> is configured for <command> command in the configuration
When we run the <command> command
Then the call should succeed

(continues on next page)

78 Chapter 6. Feature documentation

Exec-helper, Release 0.5.0

(continued from previous page)

And the runtime environment for <command> should contain the given
→˓<environment>

Examples:
| command | pattern |

→˓environment |
| Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | KEY:

→˓{PATTERN} |
| Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | {PATTERN}

→˓:VALUE |
| Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | {PATTERN}:

→˓{PATTERN} |
| Command1 | { "key": "PATTERN", "default_values": ["blaat"] } | this-

→˓{PATTERN}-key:this-{PATTERN}-value |
| Command1 | { "key": "SPA CE", "default_values": ["bla a at"] } | {SPA CE}:

→˓{SPA CE} |

6.3 Custom modules

@cmd_args @custom_plugins @custom_plugins_discovery
Feature: Discover custom plugins

Scenarios for discovering custom plugins at runtime

Examples:
| command_line |
| --list-plugins |

Background:
Given a controlled environment
And a valid configuration
And a random custom plugin directory

@successful
Scenario: Discover the system modules

When we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain <plugin_id>
And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ |
| bootstrap | Lua plugin for module \S*/plugins/bootstrap.lua

→˓ |
| clang-static-analyzer | Lua plugin for module \S*/plugins/clang-static-

→˓analyzer.lua|
| clang-tidy | Lua plugin for module \S*/plugins/clang-tidy.lua

→˓ |
| cmake | Lua plugin for module \S*/plugins/cmake.lua

→˓ |
| command-line-command | Command-line-command \(internal\)

→˓ |
| cppcheck | Lua plugin for module \S*/plugins/cppcheck.lua

→˓ | (continues on next page)

6.3. Custom modules 79

Exec-helper, Release 0.5.0

(continued from previous page)

| docker | Lua plugin for module \S*/plugins/docker.lua
→˓ |

| lcov | Lua plugin for module \S*/plugins/lcov.lua
→˓ |

| make | Lua plugin for module \S*/plugins/make.lua
→˓ |

| ninja | Lua plugin for module \S*/plugins/ninja.lua
→˓ |

| pmd | Lua plugin for module \S*/plugins/pmd.lua
→˓ |

| scons | Lua plugin for module \S*/plugins/scons.lua
→˓ |

| selector | Lua plugin for module \S*/plugins/selector.lua
→˓ |

| valgrind | Lua plugin for module \S*/plugins/valgrind.lua
→˓ |

@error
Scenario: Fail to find a custom module when the search path is not set properly

Given a custom module with id <plugin_id>
When we register the command <command> to use the module <plugin_id>
And we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should not contain <plugin_id>

Examples:
| plugin_id | command |
| exec-helper-custom-module | Command1 |

@successful
Scenario: Discover a custom module by setting the search path in the configuration

Given a custom module with id <plugin_id>
When we register the command <command> to use the module <plugin_id>
And add the search path to the configuration
And we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain <plugin_id>
And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ | command |
| exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/exec-

→˓helper-custom-module.lua | Command1 |

@successful
Scenario: The search custom plugin configuration takes precedence over the system

→˓modules
Given a custom module with id <plugin_id>
When we register the command <command> to use the module <plugin_id>
And add the search path to the configuration
And we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain <plugin_id>

(continues on next page)

80 Chapter 6. Feature documentation

Exec-helper, Release 0.5.0

(continued from previous page)

And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ | command |
| make | Lua plugin for module \S*/custom-plugins/make.lua

→˓ | Command1 |
| command-line-command | Lua plugin for module \S*/custom-plugins/command-

→˓line-command.lua | Command1 |

@successful
Scenario: Discover a custom module by setting the search path on the command line

Given a custom module with id <plugin_id>
When we register the command <command> to use the module <plugin_id>
And add the search path to the command line
And we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain <plugin_id>
And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ | command |
| exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/exec-

→˓helper-custom-module.lua | Command1 |

@successful
Scenario: The search custom plugin command line takes precedence over the system

→˓modules
Given a custom module with id <plugin_id>
When we register the command <command> to use the module <plugin_id>
And add the search path to the command line
And we add the <command_line> as command line arguments
And we call the application
Then the call should succeed
And stdout should contain <plugin_id>
And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ | command |
| make | Lua plugin for module \S*/custom-plugins/make.lua

→˓ | Command1 |
| command-line-command | Lua plugin for module \S*/custom-plugins/command-

→˓line-command.lua | Command1 |

@successful
Scenario: The search custom plugin command line parameter takes precedence over

→˓the one(s) in the configuration
Given a custom module with id <plugin_id>
And the same custom module <plugin_id> on a different location and add it to

→˓the command line search path
When we register the command <command> to use the module <plugin_id>
And add the search path to the configuration
And we add the <command_line> as command line arguments
And we call the application

(continues on next page)

6.3. Custom modules 81

Exec-helper, Release 0.5.0

(continued from previous page)

Then the call should succeed
And stdout should contain <plugin_id>
And stdout should contain regex <description>

Examples:
| plugin_id | description

→˓ | command |
| exec-helper-custom-module | Lua plugin for module \S*/custom-plugins/other/

→˓exec-helper-custom-module.lua | Command1 |

@custom_plugins @custom_plugins_usage
Feature: Using custom plugins

Scenarios for using custom plugins

Examples:
plugin_id	command
exec-helper-custom-module	Command1
make	Command2

Background:
Given a controlled environment
And a valid configuration
And a random custom plugin directory
And a custom module with id <plugin_id>
And a registered command <command> that uses the module <plugin_id>
And the custom plugin search path is registered in the configuration

@successful
Scenario: Check that the custom plugin is called

When run the <command> command <nb_of_times> in the same statement
Then the call should succeed
And the <command> command should be called <nb_of_times> times
And stderr should be empty

Examples:
| nb_of_times |
| 1 |
| 10 |

6.4 Execution order

@execution_order
Feature: Execution order

The order of execution must be as defined by the exec-helper configuration and
→˓specification

Background:
Given a controlled environment
And a valid configuration

@successful
Scenario: Run a command with one associated command line a number of times

When we add the <command> command

(continues on next page)

82 Chapter 6. Feature documentation

Exec-helper, Release 0.5.0

(continued from previous page)

And run the <command> command <nb_of_times> in the same statement
Then the call should succeed
And the <command> command should be called <nb_of_times> times
And stderr should be empty

Examples:
command	nb_of_times
some-command	1
other-command	10

6.5 Working directory

@working_dir @settings_file_location
Feature: All paths in a configuration file are relative to the location of the
→˓settings file

Scenarios for checking all paths relative to the settings file

Examples:
| command |
| Command1 |

Background:
Given a controlled environment
And a valid configuration
And the <command> command

@successful
Scenario: The default working directory is the location of the settings file

Given a current working directory of <start_working_dir>
When we run the <command> command
Then the call should succeed
And the working directory should be the environment root dir
And the PWD environment variable should be the environment root dir

Examples:
| start_working_dir |
| /tmp |
| . |
| ./blaat |
| ./a/b/c/d |
| ~ |
| /tmp/blaat/ |

6.6 Test reports

The Feature test report shows the detailed results of the feature scenario’s.

The Unit test coverage report shows the detailed coverage of the unit tests.

6.5. Working directory 83

https://bverhagen.gitlab.io/exec-helper/integration/report.html
https://bverhagen.gitlab.io/exec-helper/coverage/index.html

Exec-helper, Release 0.5.0

84 Chapter 6. Feature documentation

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

85

Exec-helper, Release 0.5.0

86 Chapter 7. Indices and tables

Index

Symbols
-h, -help

exec-helper command line option, 11
-j, -jobs[=JOBS]

exec-helper command line option, 12
-k, -keep-going

exec-helper command line option, 12
-n, -dry-run

exec-helper command line option, 12
-s, -settings-file[=FILE]

exec-helper command line option, 12
-v, -verbose

exec-helper command line option, 11
-z, -command=COMMAND

exec-helper command line option, 12

E
exec-helper command line option

-h, -help, 11
-j, -jobs[=JOBS], 12
-k, -keep-going, 12
-n, -dry-run, 12
-s, -settings-file[=FILE], 12
-v, -verbose, 11
-z, -command=COMMAND, 12

87

	Exec-helper
	What
	Why
	Simple example
	Installation
	Documentation
	Code quality

	Installation instructions
	Installing from package
	Building from source
	Cross compilation

	exec-helper
	Synopsis
	Description
	Options
	Configured options
	Exit status
	Auto-completion
	See also

	Configuration
	Environment
	Patterns
	Description
	Mandatory keys
	Optional keys
	Working directory
	Paths
	Example configuration
	See also

	Plugins
	Custom plugins
	Bash plugin
	Bootstrap plugin
	Clang-static-analyzer plugin
	Clang-tidy plugin
	CMake plugin
	Command-line-command plugin
	Cppcheck plugin
	Docker plugin
	Execute plugin
	Fish plugin
	Lcov plugin
	Make plugin
	Meson plugin
	Ninja plugin
	Pmd plugin
	Scons plugin
	Selector plugin
	Sh plugin
	Valgrind plugin
	Zsh plugin
	Description
	General plugins
	Build plugins
	Analysis plugins
	Custom plugins
	See also

	Feature documentation
	Command line arguments
	Configuration
	Custom modules
	Execution order
	Working directory
	Test reports

	Indices and tables
	Index

